ارائه یک روش مبتنی بر مدل برای بهبود عملکرد حفاظت دیفرانسیل ترانسفورماتورهای قدرت
محورهای موضوعی : مهندسی برق و کامپیوترفرشید ناصری 1 , زهرا کاظمی 2 , محمد محمدپور 3 , ابراهیم فرجاه 4
1 - دانشگاه شیراز
2 - دانشگاه شیراز
3 - دانشگاه شیراز
4 - دانشگاه شیراز
کلید واژه: ترانسفورماتور قدرتتشخیص خطاحفاظت دیفرانسیلشناسایی سیستمفیلتر کالمن,
چکیده مقاله :
در این مقاله یک الگوریتم جدید با استفاده از فیلتر کالمن برای بهبود قابلیت اطمینان حفاظت دیفرانسیل ترانسفورماتورهای قدرت پیشنهاد شده است. جریان هجومی سهفاز با استفاده از فیلتر کالمن تعمیمیافته تخمین زده شده است. سه سیگنال باقیمانده که تفاضل بین جریانهای سهفاز اندازهگیری شده (با استفاده از ترانسفورماتورهای جریان) و جریانهای سهفاز تخمین زده شده (با استفاده از فیلتر تطبیقی) هستند، به عنوان معیاری برای تشخیص شرایط راهاندازی از شرایط خطا در نظر گرفته شدهاند. در حالت راهاندازی عادی ترانسفورماتور، با توجه به این که جریانها با دقت بالایی توسط فیلتر تطبیقی تخمین زده میشوند، این سیگنالها نزدیک به صفر هستند. در شرایط خطا، با افزایش و عبور سیگنالهای باقیمانده از مقدار آستانه، حفاظت دیفرانسیل ترانسفورماتور را از مدار خارج میکند. روش پیشنهادی به کمک نرمافزارهای MATLAB و PSCAD مورد ارزیابی قرار گرفته و کارایی آن در شرایط کاری مختلف به اثبات رسیده است.
In this paper, a new algorithm based on Kalman Filter (KF) is proposed for improving the reliability of power transformer differential protection. The three-phase currents of the transformer at the energization side are first estimated by KF. Three residual signals which are the differences between the measured (by current transformers) and estimated (by KF) are defined and considered as the decision criteria to discriminate the fault and inrush conditions. During the transformer energization, the residual signals are almost zero. However, in fault conditions, the residual signals exceed a determined threshold value and a trip command will be subsequently issued. The performance of the proposed method is verified using simulations in MATLAB and PSCAD software.
[1] R. Hamilton, "Analysis of transformer inrush current and comparison of harmonic restraint methods in transformer protection," IEEE Trans. on Industry Applications, vol. 49, no. 4, pp. 1890-1899, Apr. 2013.
[2] Z. Moravej and G. B. Gharehpetian, "Classification and discrimination among winding mechanical defects, internal and external electrical faults and inrush current of transformer," IEEE Trans. on Industrial Informatics, vol. 14, no. 2, pp. 484-493, Apr. 2017.
[3] L. L. Zhang, Q. H. Wu, T. Y. Ji, and A. Q. Zhang, "Identification of inrush currents in power transformers based on higher-order statistics," Electric Power Systems Research, vol. 146, pp. 161-169, May 2017.
[4] S. Dhar and P. K. Dash, "Differential current-based fault protection with adaptive threshold for multiple PV-based DC microgrid," IET Renewable Power Generation, vol. 11, no. 6, pp. 778-790, May 2017.
[5] G. L. Macieira and A. L. M. Coelho, "Evaluation of numerical time overcurrent relay performance for current transformer saturation compensation methods," Electric Power Systems Research, vol. 149, pp. 55-64, Aug. 2017.
[6] J. Faiz and S. Lotfi-Fard, "A novel wavelet-based algorithm for discrimination of internal faults from magnetizing inrush currents in power transformers," IEEE Trans. on Power Delivery, vol. 21, no. 4, pp. 1989-1996, Oct. 2006.
[7] O. A. Youssef, "A wavelet-based technique for discrimination between faults and magnetizing inrush currents in transformers," IEEE Trans. on Power Delivery, vol. 18, no. 1, pp. 170-176, Jan. 2003.
[8] H. Monsef and S. Lotfi-fard, "Internal fault current identification based on wavelet transform in power transformers," Electric Power Systems Research, vol. 77, no. 12, pp. 1637-1645, Oct. 2007.
[9] D. Guillen, H. Esponda, E. Vazquez, and G. Idarraga-Ospina, "Algorithm for transformer differential protection based on wavelet correlation modes," IET Generation, Transmission & Distribution, vol. 10, no. 12, pp. 2871-2879, Sept. 2016.
[10] A. Ashrafian, M. Rostami, and G. B. Gharehpetian, "Hyperbolic S-transform-based method for classification of external faults, incipient faults, inrush currents and internal faults in power transformers," IET Generation, Transmission & Distribution, vol. 6, no. 10, pp. 940-950, Oct. 2012.
[11] P. L. Mao and R. K. Aggarwal, "A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network," IEEE Trans. on Power Delivery, vol. 16, no. 4, pp. 654-660, Oct. 2001.
[12] M. Shah and B. R. Bhalja, "Discrimination between internal faults and other disturbances in transformer using the support vector machine-based protection scheme," IEEE Trans. on Power Delivery, vol. 28, no. 3, pp. 1508-1515, Apr. 2013.
[13] S. R. Samantaray and P. K. Dash, "Decision tree-based discrimination between inrush currents and internal faults in power transformer," International J. of Electrical Power & Energy Systems, vol. 33, no. 4, pp. 1043-1048, May 2011.
[14] B. He, X. Zhang, and Z. Q. Bo, "A new method to identify inrush current based on error estimation," IEEE Trans. on Power Delivery, vol. 21, no. 3, pp. 1163-1168, Jun. 2006.
[15] F. Naseri, Z. Kazemi, M. M. Arefi, and E. Farjah, "Fast discrimination of transformer magnetizing current from internal faults: an extended kalman filter-based approach," IEEE Trans. on Power Delivery, vol. 33, no. 1, pp. 110-118, Feb. 2018.
[16] S. Garcia and A. Medina, "A state space three-phase multilimb transformer model in the time domain: fast periodic steady state analysis," Power Engineering Society Summer Meeting, vol. 3, pp. 1859-1864, Vancouver, Canada, 15-19 Jul. 2001.
[17] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, John Wiley & Sons, 2006.
[18] F. Naseri, Z. Kazemi, E. Farjah, and T. Ghanbari, "Fast detection and compensation of current transformer saturation using extended kalman filter," IEEE Trans. on Power Delivery, vol. 34, no. 3, pp. 1087-1097, Jun. 2019.
[19] A. Guzman, S. Zocholl, G. Benmouyal, and H. J. Altuve, "A current-based solution for transformer differential protection II: Relay description and evaluation," IEEE Trans. on Power Delivery, vol. 17, no. 4, pp. 886-893, Oct. 2002.