تحقق بهبودیافته گیتهای یکانی کنترلشده در مدل محاسباتی کوانتومی یکطرفه با استفاده از حساب اندازهگیری تعمیمیافته
محورهای موضوعی : مهندسی برق و کامپیوترمحبوبه هوشمند 1 , منیره هوشمند 2
1 - دانشگاه آزاد اسلامی، واحد مشهد
2 - دانشگاه بین المللی امام رضا(ع) مشهد
کلید واژه: بهینهسازیحساب اندازهگیری تعمیمیافتهسنتزگیتهای یکانی کنترلشدهمدل محاسبات کوانتومی یکطرفه,
چکیده مقاله :
در مدل محاسبات کوانتومی یکطرفه (WQC1)، همبستگي کوانتومي در يک مدل درهمتنيده که حالت گرافي يا حالت خوشهاي خوانده ميشود، باعث ميگردد که محاسبات جامع کوانتومي تنها با استفاده از اندازهگيريهاي تککيوبيتي محقق شود. در WQC1 محاسبات با الگوهای اندازهگیری یا به طور خلاصه الگو نمایش داده میشوند. مسأله سنتز در مدل WQC1 به صورت استخراج الگو از يک ماتریس يکاني دلخواه ورودي تعريف ميشود. معیارهای اصلی در ارزیابی الگوهای اندازهگیری در مدل WQC1، اندازه، عمق الگو و تعداد درهمتنیدگیهای الگو است. در این مقاله، روش جدیدی برای سنتز گیتهای یکانی U کنترلشده که U یک گیت تککیوبیتی است در مدل WQC1 ارائه شده است. بدین منظور برای نخستین بار، ایده استفاده از حساب اندازهگیری تعمیمیافته (که از اندازهگیری در صفحات مختلف کره بلاخ بهره میبرد) در مفهوم سنتز در مدل WQC1 استفاده میشود. بهینهسازیهایی نیز مبتنی بر این ایده پیشنهاد شده و با استفاده از آن، روش پیشنهادی برای سنتز گیتهای یکانی کنترلشده در مدل WQC1 معیارهای ارزیابی اندازه، عمق و تعداد درهمتنیدگیهای الگو را نسبت به بهترین کار قبلی به ترتیب به میزان 1/9%، 30% و 1/18% بهبود میدهد.
In one-way quantum computation model (1WQC), the quantum correlations in an entangled state, called a cluster state or graph state, are used to perform universal quantum computations using single-qubit measurements. In 1WQC, the computations are shown by measurement patterns or simply patterns. The synthesis problem in the 1WQC model is defined as extracting the pattern from a given arbitrary unitary matrix. The important criteria in evaluating measurement patterns in the 1WQC model, are the size, the depth and the number of entanglements of the pattern. In this paper, a new approach is proposed to synthesize controlled-unitary U gates where U is a single-qubit gate. To this end, for the first time, the idea of applying the extended measurement calculus, which utilizes the measurements in different Bloch sphere planes, is used in the synthesis of the 1WQC model. Some optimizations are proposed for this method and a new approach is presented to synthesize controlled-U gates for the 1WQC model which improves the evaluation criteria of size, depth and the number of entanglements in this model as compared to the best previous result by 9.1%, 30% and 18.1%, respectively.
[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th Anniversary Ed.: Cambridge University Press, 2010.
[2] M. Nakahara and T. Ohmi, Quantum Computing: from Linear Algebra to Physical Realizations, 1st Edition, Boca Raton, Taylor & Francis, 2008.
[3] G. Benenti, G. Casati, and G. Strini, Principles of Quantum Computation and Information: Basic Concepts, World Scientific, 2004.
[4] P. W. Shor, "Algorithms for quantum computation: discrete logarithms and factoring," in Proc. of the 35th Annual Symp. on Foundations of Computer Science, IEEE Conf., pp. 124-134, Santa Fe, NM, USA, 20-22 Nov. 1994.
[5] L. K. Grover, "A fast quantum mechanical algorithm for database search," in Proc. STOC'96 of the 28th Annual ACM Symposium on Theory of Computing, pp. 212-219, Philadelphia, PA, USA, 22-24 May 1996.
[6] V. V. Shende, S. S. Bullock, and I. L. Markov, "Synthesis of quantum-logic circuits," in Proc. ASP-DAC'05 of the Asia and South Pacific Design Automation Conf., pp. 272-275, Shanghai, China, 18-21 Jan. 2005.
[7] D. G. Angelakis, M. Christandl, and A. Ekert, "An introduction to measurement-based quantum computation," NATO Science Series, III: Computer and Systems Sciences, Quantum Information Processing-from Theory to Experiment, vol. 199, pp. 137-158, 2006.
[8] H. J. Briegel, D. E. Browne, W. Dur, R. Raussendorf, and M. V. den Nest, "Measurement-based quantum computation," Nature Physics, vol. 5, no. 1, pp. 19-26, Jan. 2009.
[9] D. Gottesman and I. Chuang, "Quantum teleportation as a universal computational primitive," Nature, vol. 402, pp. 390-393, 1999.
[10] R. Raussendorf and H. J. Briegel, "A one-way quantum computer," Physical Review Letters, vol. 86, no. 22, pp. 5188-5191, 28 May 2001.
[11] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature, vol. 434, no. 7030, pp. 169-176, 10 Mar. 2005.
[12] R. Stock and D. F. V. James, "Scalable, high-speed measurement-based quantum computer using trapped ions," Physical Review Letters, vol. 102, no. 17, p. 170501, 1 May 2009.
[13] M. Tame, B. Bell, C. Di Franco, W. Wadsworth, and J. Rarity, "Experimental realization of a one-way quantum computer algorithm solving simon's problem," Physical Review Letters, vol. 113, no. 20, p. 200501, 14 Nov. 2014.
[14] M. Houshmand, M. Sedighi, M. Saheb Zamani, and K. Majoei, "Quantum circuit synthesis targeting to improve one-way quantum computation pattern cost metrics," ACM J. on Emerging Technologies in Computing Systems, vol. 13, no. 4, Article 55, 11 May 2017.
[15] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, "Elementary gates for quantum computation," Physical Review A, vol. 52, no. 55, pp. 3457-3467, 1 Nov. 1995.
[16] V. Danos, E. Kashefi, and P. Panangaden, "The measurement calculus," J. of ACM, vol. 54, no. 2, Article 8, 2 Apr. 2007.
[17] A. Broadbent and E. Kashefi, "Parallelizing quantum circuits," Theoretical Computer Science, vol. 410, no. 26, pp. 2489-2510, 6 Jun. 2009.
[18] E. Pius, Automatic Parallelization of Quantum Circuits Using the Measurement-Based Quantum Computing Mode, M.Sc. Thesis in High-Performance Computing, University of Edinburgh, 2010.
[19] M. Houshmand, M. S. Zamani, M. Sedighi, and M. H. Samavatian, "Automatic translation of quantum circuits to optimized one-way quantum computation patterns," Quantum Information Processing, vol. 13, no. 11, pp. 2463-2482, 15Nov. 2014.
[20] V. Danos, E. Kashefi, and P. Panangaden, "Parsimonious and robust realizations of unitary maps in the one-way model," Physical Review A, vol. 72, no. 6, p. 064301, 6 Dec. 2005.
[21] A. Trisetyarso and R. V. Meter, "Circuit design for a measurement-based quantum carry-lookahead adder," International J. of Quantum Information, vol. 8, no. 5, pp. 843-867, 15 Mar. 2010.
[22] A. Trisetyarso, Theoretical Study towards Realization of Measurement-Based Quantum Computers, Ph.D Thesis, Keio University, 2011.
[23] R. D. da Silva and E. F. Galvao, "Compact quantum circuits from one-way quantum computation," Physical Review A, vol. 88, no. 1, p. 012319, 19 Jul. 2013.
[24] م. اسلامی، م. صاحبالزمانی، م. صدیقی و م. هوشمند، "بهینهسازی مدارهای کوانتومی با استفاده از مدل محاسبات کوانتومی یکطرفه مبتنی بر هندسه الگو،" نشريه مهندسي برق و مهندسي کامپيوتر ايران- ب، جلد 13، شماره 4، صص. 239-248، زمستان 1395.
[25] V. Bergholm, J. J. Vartiainen, M. Mottonen, and M. M. Salomaa, "Quantum circuits with uniformly controlled one-qubit gates," Physical Review A, vol. 71, no. 5, pp. 23-30, 27 May 2005.
[26] M. Houshmand, M. Houshmand, and J. F. Fitzsimons, "Minimal qubit resources for the realisation of measurement-based quantum computation," Physical Review A, vol. 98, no. 1, p. 012318, 17 Jul. 2018.
[27] V. Danos, E. Kashefi, P. Panangaden, and S. Perdrix, "Extended measurement calculus," Semantic Techniques in Quantum Computation, Cambridge University Press, pp. 235-310, 2009.
[28] A. M. Steane, "Error correcting codes in quantum theory," Physical Review Letters, vol. 77, no. 5, p. 793, 29 Jul. 1996.
[29] D. Bacon, "Operator quantum error-correcting subsystems for self-correcting quantum memories," Physical Review A, vol. 73, no. 1, p. 012340, Jan. 2006.
[30] M. Houshmand, S. Hosseini-Khayat, and M. M. Wilde, "Minimal-memory, noncatastrophic, polynomial-depth quantum convolutional encoders," IEEE Trans. on Information Theory, vol. 59, no. 2, pp. 1198-1210, Feb. 2013.
[31] V. Kliuchnikov, D. Maslov, and M. Mosca, "Fast and efficient exact synthesis of single qubit unitaries generated by clifford and T gates," Quantum Information and Computation, vol. 13, no. 7-8, pp. 607-630, Jul. 2013.
[32] B. Giles and P. Selinger, "Exact synthesis of multiqubit clifford+T circuits," Physical Review A, vol. 87, no. 3, p. 032332, Mar. 2013.
[33] C. C. Lin, A. Chakrabarti, and N. K. Jha, "FTQLS: fault-tolerant quantum logic synthesis," IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 6, pp. 1350-1363, Jul. 2014.
[34] M. Silva, V. Danos, E. Kashefi, and H. Ollivier, "A direct approach to fault-tolerance in measurement-based quantum computation via teleportation," New J. of Physics, vol. 9, no. 6, pp. 192-203, Jun. 2007.