نوسانساز کنترلشونده با ولتاژ به همراه شرایط راهاندازی قوی و نویز فاز کم برای کاربردهای باند K
محورهای موضوعی : مهندسی برق و کامپیوترمصطفی کاتبی 1 , عباس نصری 2 , سیروس طوفان 3 , حبیبالله زلفخانی 4
1 - برق
2 - دانشگاه زنجان
3 - دانشگاه زنجان
4 - دانشگاه زنجان
کلید واژه: نوسانساز کنترلشونده با ولتاژزوج ضربدریکولپیتسنویز فاز,
چکیده مقاله :
در این مقاله طراحی و شبیهسازی یک نوسانساز کنترلشونده با ولتاژ برای کاربردهای باند K ارائه شده است. در طراحی این مدار از ترکیب ساختارهای زوج ضربدری و کولپیتس برای بهرهمندی از مزایای آنها به صورت همزمان استفاده شده است. با به کارگیری ترکیب این دو ساختار در مدار پیشنهادی، شرایط راهاندازی و نویز فاز آن بهبود یافته است. همچنین با قراردادن دو سلف در میان ساختار زوج ضربدری و ساختار کولپیتس، ترارسانایی مؤثر نوسانساز کنترلشونده با ولتاژ افزایش یافته و شرایط راهاندازی بهتر شده است. این مدار با استفاده از بانک خازنی سوئیچشونده، گستره فرکانسی زیادی را پوشش میدهد. نتایج شبیهسازی نوسانساز پیشنهادی، بیانگر این است که مدار برای فرکانس 25/24 گیگاهرتز در آفست 1 مگاهرتز، دارای نویز فاز dBc/Hz - 120 و ضریب شایستگی dBc/Hz 67/195- است. گستره فرکانسی پوشش داده شده توسط این نوسانساز کنترلشونده با ولتاژ 4/1 گیگاهرتز و گستره تنظیم آن در حدود 7/5%، حول فرکانس مرکزی است. مدار پیشنهادی دارای ابعاد جانمایی 2µm 335/0 در فناوریCMOS µm 18/0 TSMC با منبع تغذیهV 5/1 و توان مصرفی mW 92/15 است.
This paper presents a voltage controlled oscillator (VCO) based on a cross-coupled pair and Colpitts structures for K-band applications. By employing cross-coupled pair and Colpitts structures, the dc power consumption and phase noise was reduced. By using inductors between cross-coupled pair and Colpitts structures, the effective transconductance was enhanced and robust the start-up condition. In order to cover a wide frequency tuning range, a capacitor bank was used. The VCO has been designed and simulated in TSMC 0.18 µm CMOS technology. Simulation results showed that the simulated phase noise of center frequency (24.25 GHz), at 1-MHz offset frequency is-120 dBc/Hz and the figure of merit is -195.67 dBc/Hz. The covering frequency range and tuning range of this VCO are 1.4 GHz and 5.7%, respectively. The occupied area of the layout is 335 µ2m and the power consumption of this VCO was 15.92 mW from 1.5 V supply voltage.
[1] ر. بستانی، م. انصاریان و ج. یاوند حسنی، "تحلیل عناصر پارازیتی عناصر بر عملکرد نوسانگر تزویج ضربدری در محدود باند میلیمتری،" مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صص. 875-867، پاییز 1396.
[2] M. Hsieh and G. E. Sobelman, "Comparison of LC and ring VCOs for PLLs in a 90 nm digital CMOS Process," in Proc. Int. SOC Design Conf., pp. 19-22, Jan. 2006.
[3] م. عظیم کرمی، م. انصاریان و س. عقلی مقدم، "نوسانساز حلقوی جدید کنترلشده با ولتاژ با استفاده از اثر میلر،" مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صص. 228-221، بهار 1396.
[4] T. P. Wang, "A CMOS colpitts VCO using negative-conductance boosted technology," IEEE Trans. on Circuits and Systems-I, vol. 58, no. 11, pp. 2623-2635, Nov. 2011.
[5] K. W. Cheng and M. Je, "A current-switching and gm-enhanced colpitts quadrature VCO," IEEE Microwave and Component Letters, vol. 23, no. 3, pp. 143-145, Mar. 2013.
[6] R. Aparicio and A. Hajimiri, "A noise-shifting colpitts differential VCO," IEEE J. of Solid-State Circuit, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
[7] B. E. Seow and W. C. Lai, "Fully integrated 24 GHz CMOS injection-locked VCO with folded marchand balun," in Proc. Region 10 Conf.,TENCON’16, pp. 2528-2530, Singapore, Singapore, 22-25 Nov. 2016.
[8] M. S. Sadr, H. Ghafoorirad, M. Yavari, and S. Sheikhaei, "A novel low phase noise and low power DCO in 90 nm technology for ADPLL application," in Proc. 24th Iranian Conf. on Electrical Engineering, pp. 810-815, Shiraz, Iran, 10-12 May 2016.
[9] Y. Ting, Z. Y. Ming, L. H. Liang, Z. Y. Men, and W. Yue, "A K-band low phase noise and wide tunnig range LC VCO," in Proc. IEEE 12th In. Conf. on Solid-State and Integrated Circuit Technology, 3 pp., Guilin, China, 28-31 Oct. 2014.
[10] T. N. Nguyen and J. W. Lee, "A K-band CMOS differential vackar VCO with the gate inductive feedback," IEEE Trans. on Circuits and Systems, vol. 59, no. 5, pp. 257-261, Mar. 2012.
[11] I. Mansour, H. Mosalam, A. Allam, A. B. Abdel-Rahman, and R. K. Pokharel, "K band low power voltage controlled oscillator using 180 nm CMOS technology with a new high quality inductor," in Proc. Int. Conf. on Ubiquitous Wireless Broadband, ICUWB’16, 4 pp., Nanjing, China, 16-19 Oct. 2016.
[12] J. H. Tsai, Y. Z. Lin, and Y. T. Kuo, "A K-band low phase noise and low power CMOS voltage controlled oscillator," IEEE Microwave and Optical Technology Letters, vol. 59, no. 2, pp. 362-366, Feb. 2017.
[13] H. H. Hsieh and L. H. Lu, "A low-phase-noise K-band CMOS VCO," IEEE Microwave and Component Letters, vol. 16, no. 10, pp. 552-554, Sept. 2006.
[14] H. Y. Chang and S. G. Lee, "Design and analysis of CMOS low-phase-noise low-jitter subharmonically injection-locked VCO with FLL self-alignment technique," IEEE Trans. on Microwave Theory and Technique, vol. 24, no. 12, pp. 4632-4645, Dec. 2016.
[15] N. Lacaita, M. Bassi, A. Mazzanti, and F. Svelto, "A low-noise K-band class-C VCO for E-band 5G backhaul systems in 55 nm BiCMOS technology," in Proc. 13th Conf. on Ph.D Research in Microelectronics and Electronics, PRIME’17, pp. 193-196, Giardini Naxos, Italy, 12-15 Jun. 2017.
[16] N. Jahan, A. Barakat, and R. K. Pokharel, "Study of phase noise improvement of K-band VCO using additional series resonance realized by DGS resonator on CMOS technology," in Proc. IEEE Asia Pacific Microwave Conf., APMC’17, pp. 1014-1017, Kuala Lumpur, Malaysia, 13-16 Nov. 2017.
[17] P. E. Allen and D. T. Holberg, CMOS Analog Circuit Design, Oxford University Press, 2011.
[18] A. Buonomo and A. L. Schiavo, "Modeling and analysis of differential VCOs," International J. of Circuit Theory Application, vol. 32, no. 3, pp. 117-131, May 2004.
[19] H. H. Hsieh and L. H. Lu, "A high-performance CMOS voltage-controlled oscillator for ultra-low-voltage operations," IEEE Trans. on Microwave Theory and Technique, vol. 55, no. 3, pp. 467-473, Mar. 2007.
[20] H. H. Hsieh and L. H. Lu, "A V-band CMOS VCO with an admittance-transforming cross-coupled pair," IEEE J. of Solid-State Circuits, vol. 44, no. 6, pp. 1689-1696, May 2009.
[21] A. Tasic, W. A. Serdijn, and J. R. Long, "Resonant-inductive degeneration for manifold improvement of phase noise in bipolar LC-oscillators," IEEE Trans. on Circuits and Systems-I, Reg. Papers, vol. 57, no. 6, pp. 1175-1186, Dec. 2010.
[22] B. Razavi, B. Goodwin, and J. Fuller, RF Microelectronics, 2nd Edition, USA, Prentice Hall, 2011.
[23] J. P. Hong and S. G. Lee, "Low phase noise Gm boosted differential gate-to-source feedback Colpitts CMOS VCO," IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3079-3091, Nov. 2009.