افزایش تفکیکپذیری تکتصویری با در نظر گرفتن سازگاری در همسایگی پیکسلها و استفاده از روش خودیادگیرنده
محورهای موضوعی : مهندسی برق و کامپیوترملیحه حبیبی 1 , علیرضا احمدیفرد 2 , حمید حسن پور 3
1 - دانشگاه صنعتی شاهرود
2 - دانشگاه صنعتی شاهرود
3 - دانشگاه صنعتی شاهرود
کلید واژه: افزایش تفکیکپذیری تکتصویربازنمایی تنکپیکسلهای همسایهرگرسیون بردار پشتیبانروش خودیادگیرندهوصلههای تصویر,
چکیده مقاله :
در این مقاله، یک روش افزایش تفکیکپذیری خودیادگیرنده پیشنهاد گردیده که از اطلاعات پیکسلهای مجاور هر پیکسل برای تخمین ارزش آن پیکسل استفاده شده است. برای این منظور، دو هرم با تفکیکپذیری بالا و تفکیکپذیری پایین با اعمال متناوب الگوریتمهای افزایش و کاهش نرخ نمونهبرداری بر تصویر ورودی ایجاد میشوند که به عنوان مجموعه تصاویر آموزشی مورد استفاده قرار میگیرند. روش پیشنهادی با مدلسازی ارتباط بین وصلههای تصاویر در سطوح متناظر دو هرم تفکیکپذیری بالا و تفکیکپذیری پایین با استفاده از رگرسیون بردار پشتیبان، به تخمین مقادیر جدید پیکسلها در تصویر خروجی میپردازد. از بازنمایی تنک به عنوان ویژگی هر وصله در تصاویر هرم با تفکیکپذیری پایین استفاده شده است. در این مقاله، جهت کاهش تارشدگی پیکسلهای لبه، ابتدا پیکسلهای لبه و غیر لبه مشخص میشوند. سپس به ازای پیکسلهایی که در نواحی غیر یکنواخت قرار دارند، پیکسلهای همسایه مورد استفاده قرار نمیگیرند. لذا در روش پیشنهادی، ارزش پیکسلهای همسایه هر پیکسل در نواحی یکنواخت، مدل شده و در تعیین ارزش نهایی دخالت داده میشود. نتایج حاصل از آزمایشات نشان داده که روش پیشنهادی عملکرد بهتری نسبت به سایر روشهای مطرحشده در زمینه افزایش تفکیکپذیری تصویر از لحاظ کمی و کیفی داشته است.
In this paper, we propose a self-learning single image super-resolution. In our proposed method, adjacent pixels information in smooth area is used. Low and high-resolution pyramids are built by applying up-sampling and down-sampling techniques on input image, as training data. In training phase, we apply support vector regression (SVR) to model the relationship between the pair of low and high-resolution images. For each patch in the low-resolution image, sparse representation is extracted as a feature vector. In this paper, in order to reduce the edge blurring effects, we first separate edge pixels from non-edge pixels. In the smooth area, because of the similar colors around the each pixel, the center pixel value is determined by considering the reconstructed adjacent pixels. Experimental results show that the proposed method is quantitatively and qualitatively outperform the competitive super-resolution approaches.
[1] M. Bevilacqua, A. Roumy, C. Guillemot, and M. Morel, "Single-image super-resolution via linear mapping of interpolated self-examples," IEEE Trans. on Image Processing, vol. 23, no. 12, pp. 5334-5347, Dec. 2014.
[2] T. S. Huang and R. Y. Tsai, "Multiframe image restoration and registration," Advances in Computer Vision and Image Processing, vol. 1, no. 7, pp. 317-339, Apr. 1984.
[3] M. Irani and S. Peleg, "Super resolution from image sequences," in Proc. 10th Int. Conf. on Pattern Recognition, vol. 2, pp. 115-120, Jun. 1990.
[4] J. W. Hwang and H. S. Lee, "Adaptive image interpolation based on local gradient features," IEEE Signal Processing Letters, vol. 11, no. 3, pp. 359-362, Feb. 2004.
[5] H. Quang Luong, A. Ledda, and W. Philips, "Non-local image interpolation," in Proc. IEEE Int. Conf. on Image Processing ICIP'06, pp. 693-696, Atlanta, GA, USA, 8-11 Oct. 2006.
[6] Y. Cha and S. Kim, "Edge-forming methods for color image zooming," IEEE Trans. Image Processing, vol. 15, no. 8, pp. 2315-2323, Aug. 2006.
[7] Y. Cha and S. Kim, "PDE-based interpolation for image super resolution," International Journal of Future Generation Communication and Networking, vol. 1, pp. 214-219, Dec. 2007.
[8] H. Kim, Y. Cha, and S. Kim, "Curvature interpolation method for image zooming," IEEE Trans. on Image Processing, vol. 20, no. 7, pp. 1895-1903, Jul. 2011.
[9] F. Malgouyres and F. Guichard, "Edge direction preserving image zooming: a mathematical and numerical analysis," SIAM J. on Numerical Analysis, vol. 39, no. 1, pp. 1-37, Nov. 2001.
[10] A. Belahmidi and F. Guichard, "A partial differential equation approach to image zoom," in Proc. Int. Conf. on Image Processing, ICIP'04, pp. 649-652, Singapore, Singapore, 24-27 Oct. 2004.
[11] S. G. Chang, Z. Cvetkovic, and M. Vetterli, "Locally adaptive wavelet-based image interpolation," IEEE Trans. on Image Processing, vol. 15, no. 6, pp. 1471-1485, Jun. 2006.
[12] G. Freedman and R. Fattal, "Image and video upscaling from local self-examples," ACM Trans. on Graphics, vol. 28, no. 3, pp. 1-10, Apr. 2010.
[13] J. Yang, Z. Lin, and S. Cohen, "Fast image super-resolution based on in-place example regression," in Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, CVPR'13, pp. 1059_1066, Portland, OR, USA, 23-28 Jun. 2013.
[14] D. Glasner, S. Bagon, and M. Irani, "Super-resolution from a single image," in Proc. IEEE 12th Int. Conf. on Computer Vision, ICCV'09, pp. 349-356, Kyoto, Japan, 29 Sept.-2 Oct. 2009.
[15] C. Y. Yang, J. B. Huang, and M. H. Yang, "Exploiting self-similarities for single frame super-resolution," in Proc. Asian Conf. on Computer Vision, ACCV'10, vol. 3, pp. 497-510, Queenstown, New Zealand, 8-12 Nov. 2010.
[16] M. C. Yang, C. H. Wang, T. Y. Hu, and Y. C. F. Wang, "Learning context-aware sparse representation for single image super-resolution," in Proc. IEEE Int. Conf. on Image Processing, ICIP'11, pp. 1349-1352, Brussels, Belgium, 11-14 Sept. 2011.
[17] W. T. Freeman, T. R. Jones, and E. C. Pasztor, "Example-based superresolution," IEEE Comput. Graph. Appl., vol. 22, no. 2, pp. 56-65, Apr. 2002.
[18] H. Chang, D. Y. Yeung, and Y. Xiong, "Super-resolution through neighbor embedding," in Proc. IEEE Conf. Comput. Vision and Pattern Recognition, pp. 275-282, Washington, DC, USA, 27 Jun.-2 Jul. 2004.
[19] N. Suetake, M. Sakano, and E. Uchino, "Image super-resolution based on local self-similarity," Optical Review, vol. 15, no. 11, pp. 26-30, Jan. 2008.
[20] M. C. Yang and Y. C. F. Wang, "A self-learning approach to single image super-resolution," IEEE Trans. on Multimedia, vol. 15, no. 3, pp. 498-508, Apr. 2013.
[21] J. Yang, J. Wright, T. S. Huang, and Y. Ma, "Image super-resolution as sparse representation of raw image patches," in Proc. IEEE Conf. Comput. Vision and Pattern Recognition, CVPR'08, pp. 2861-2873, Anchorage, AK, USA, 23-28 Jun. 2008.
[22] J. Yang, J. Wright, T. Huang, and Y. Ma, "Image super-resolution via sparse representation," IEEE Trans. Image Process., vol. 19, no. 11, pp. 2861-2873, Nov. 2010.
[23] M. C. Yang, C. T. Chu, and Y. C. F. Wang, "Learning sparse image representation with support vector regression for single-image super-resolution," in Proc. IEEE Int. Conf. Image Processing, ICIP'10, pp. 1973-1976, Hong Kong, China, 26-29 Sept. 2010.
[24] K. I. Kim and Y. Kwon, "Single-image super-resolution using sparse regression and natural image prior," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 6, pp. 1127-1133, Jun. 2010.
[25] M. Protter and M. Elad, "Image sequence denoising via sparse and redundant representations," IEEE Trans. Image Process., vol. 18, no. 1, pp. 27-35, Jan. 2009.