طبقهبند خودسازمانده هندسی مبتنی بر یادگیری فعال برای نهانکاوی در محیط ویدئو با صرف حداقل برچسب
محورهای موضوعی : مهندسی برق و کامپیوترهادی صدوقی یزدی 1 , علی محی الدینی شاهم آبادی پور 2 , مرتضی خادمی 3
1 - دانشگاه فردوسی مشهد
2 - دانشگاه شهید باهنر کرمان
3 - دانشگاه فردوسی مشهد
کلید واژه:
چکیده مقاله :
طبقهبند یکی از سه بلوک تشکیلدهنده یک نهانکاو ویدئو است که برای آموزش نیازمند برچسب میباشد. در نهانکاوی کور به دلیل عدم دسترسی به الگوریتمهای نهاننگاری تهیه برچسب مشکل است. در این مقاله از طبقهبند خودسازمانده پویای شبهناظر برای رسیدن به حداقل برچسب استفاده شده و بدین منظور مفهومی به نام افزونگی هندسی گرههای لایه زیرین شبکه خودسازمانده پویای شبهناظر به کار گرفته شده است. نشان داده شده که این افزونگی منجر به ایجاد الگوهای تکراری برای شبکه خواهد شد، پس حذف چنین گرههایی بلامانع است. اثبات شده به دلیل وجود تناظر یک به یک بین گرهها و برچسبها کاهش گرهها منجر به کاهش تعداد برچسب لازم میشود. نکته اساسی این که لازمه وجود افزونگی هندسی در میان تعدادی گره که مفهومی انتزاعی است، تشکیل دسته توسط آنهاست و بنابراین مبنای الگوریتم پیشنهادی شناسایی دستهها و ادغام اعضای آنهاست. طبقهبند به دست آمده بر این مبنا طبقهبند خودسازمانده هندسی نام نهاده شده و اثبات میشود که این طبقهبند میتواند به مقدار بهینه حداقل برچسب دست یابد. نتایج شبیهسازی نشاندهنده برتری چشمگیر طبقهبند نسبت به الگوریتمهای پیشین است.
Classifier is one of the three blocks of a video steganalysis that needs labeled for training. In the blind video steganalysis, due to the lack of access to steganography algorithms, it is difficult to label. In this paper, the semi supervised growing self-organizing map classifier has been used to reach the minimum label. For this purpose, a concept called the geometric redundancy of the lower-layer nodes of the semi supervised self-organizing network has been used. It has been shown that this redundancy will create repetitive patterns of the network, so deleting such nodes is possible. Proven due to the existence of one-to-one correspondence between nodes and labels. Reducing nodes leads to a reduction in the number of labels required. The basic point is the need for a geometric redundancy among a number of nodes, which is a conception of abstraction, is the formation of a group by them. Therefore, the proposed algorithm is based on identifying categories and integrating their members. The classifier obtained on this basis has been named a geometric self-organizing map classifier .It is proven that this classifier can achieve the minimum amount of optimal label. The simulation results show a remarkable superiority over the previous algorithms.
