محاسبه چگالی شار مغناطیسی بیباری در ماشین شارمحور آهنربای دایم با استفاده از روش تحلیلی شبه سهبعدی
محورهای موضوعی : مهندسی برق و کامپیوترمحمدرضا عليزاده پهلواني 1 , یوسف شهبازی آیت 2 , ابوالفضل واحدی 3
1 - دانشگاه مالک اشتر
2 - دانشگاه صنعتی مالک اشتر
3 - دانشگاه علم و صنعت ايران
کلید واژه: ماشینهای شارمحور آهنربای دایم میدانهای مغناطیسی روش تحلیلی معادلات ماکسول,
چکیده مقاله :
در این مقاله یک روش تحلیلی شبه سهبعدی برای محاسبه چگالی شار مغناطیسی بیباری ماشین شارمحور آهنربای دایم ارائه شده است. این روش به صورت ترکیبی از حل تحلیلی دوبعدی میدان مغناطیسی و استفاده از یک تابع اصلاح برای لحاظ اثر شعاعی ماشین بر روی توزیع میدان مغناطیسی میباشد. تابع اصلاح به صورت تحلیلی و با استفاده از پرمانسهای فاصله هوایی و پرمانسهای نشتی به دست آمده است. این روش تحلیلی دارای زمان محاسباتی بسیار کمتری نسبت به نرمافزارهای المان محدود میباشد و از این رو میتواند در طراحی و بهینهسازی ماشینهای الکتریکی مورد استفاده قرار گیرد. در نهایت اعتبارسنجی نتایج روش تحلیلی ارائهشده با استفاده از تحلیل افزار المان محدود انجام شده است.
This paper presents a semi-3D analytical method for calculation of the no-load magnetic flux density in an axial flux permanent-magnet machine. This method is based on a 2-D analytical solution of magnetic field and using modulation function for considering machine’s radial effect on magnetic field distribution. Modulation function is obtained analytical and by use of airgap and leakage permeances. This analytical method takes much less computational time than 3-D finite element method (FEM) does, and is, thus, useful for designing and optimization purposes. Finally, the accuracy of the presented analytical model is validated by comparing its results to corresponding finite-element analysis.
[1] F. Giulii Capponi, G. De Donato, and F. Caricchi, "Recent advances in axial-flux permanent-magnet machine technology," IEEE Trans. on Industry Applications, vol. 48, no. 4, pp. 2190-2205, Nov./Dec. 2012.
[2] M. Aydin, S. Huang, and T. A. Lipo, "Axial flux permanent magnet disc machines: a review," in Proc. of Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM'04, pp. 61-71, Jun. 2004.
[3] J. F. Eastham, et al., "Novel axial flux machine for aircraft drive: design and modeling," IEEE Trans. Magn., vol. 38, no. 5, pp. 3003-3005, Sep. 2002.
[4] P. Brooking and J. R. Bumby, "An integrated engine-generator set with power electronic interface for hybrid electric vehicle applications brooking," in Proc. Int. Conf. Power Electronics Machines and Drives, pp. 153-158, 4-7 Jun. 2002.
[5] M. Andriollo, M. De Bortoli, G. Martinelli, A. Morini, and A. Tortella, "Permanent magnet axial flux disc generator for small wind turbines," in Int. Conf. Electrical Machines, 6 pp., 2008.
[6] R. J. Wang, M. J. Kamper, K. Van der Westhuizen, and J. F. Gieras, "Optimal design of a coreless stator axial flux permanent-magnet generator," IEEE Trans. Magn., vol. 41, no. 1, pp. 55-64, Jan. 2005.
[7] S. Brisset, D. Vizireanu, and P. Brochet, "Design and optimization of a nine-phase axial-flux PM synchronous generator with concentrated winding for direct-drive wind turbine," IEEE Trans. Ind. Appl., vol. 44, no. 3, pp. 707-715, 6-9 Sept. 2008.
[8] T. F. Chan and L. L. Lai, "An axial-flux permanent-magnet synchronous generator for a direct-coupledwind-turbine system," IEEE Trans. Energy Convers., vol. 22, no. 1, pp. 86-94, Mar. 2007.
[9] S. Javadi and M. Mirsalim, "A coreless axial-flux permanent-magnet generator for automotive applications," IEEE Trans. Magn., vol. 44, no. 12, pp. 4591-4598, Dec. 2008.
[10] S. Javadi and M. Mirsalim, "Design and analysis of 42-V coreless axial-flux permanent-magnet generators for automotive applications," IEEE Trans. Magn., vol. 46, no. 4, pp. 1015-1023, Apr. 2010.
[11] Z. Q. Zhu, D. Howe, E. Bolte, and B. Ackermann, "Instantaneous magnetic field distribution in brushless permanent magnet dc motors, part i: open-circuit field," IEEE Trans. Magn., vol. 29, no. 1, pp. 124-135, Jan. 1993.
[12] E. P. Furlani, "Computing the field in permanent-magnet axial-field motors," IEEE Trans. Magn., vol. 30, no. 5, pp. 3660-3663, Sep. 1994.
[13] J. R. Bumby, R. Martin, M. A. Mueller, E. Spooner, N. L. Brown, and B. J. Chalmers, "Electromagnetic design of axial-flux permanent magnet machines," in Proc. Inst. Electr. Eng. Electr. Power Appl., vol. 151, no. 2, pp. 151-159, Mar. 2004.
[14] F. Marignetti, G. Tomassi, and J. Bumby, "Electromagnetic modeling of permanent magnet axial flux motors and generators," Compel, vol. 25, no. 2, pp. 510-522, 2006.
[15] P. Virtic, P. Pisek, M. Hadziselimovic, T. Marcic, and B. Stumberger, "Torque analysis of an axial flux permanent magnet synchronous machine by using analytical magnetic field calculation," IEEE Trans. Magn., vol. 45, no. 3, pp. 1036-1039, Mar. 2009.
[16] H. Tiegna, A. Bellara, Y. Amara, and G. Barakat, "Analytical modeling of the open-circuit magnetic field in axial flux permanent-magnet machines with semi-closed slots," IEEE Trans. Magn., vol. 48, no. 3, pp. 1212-1226, Mar. 2012.
[17] Y. Huang, B. Ge, J. Dong, H. Lin, J. Zhu, and Y. Guo, "3-D analytical modeling of no-load magnetic field of ironless axial flux permanent magnet machine," IEEE Trans. Magn., vol. 48, no. 11, pp. 2929-2932, Nov. 2012.
[18] O. De la Barriere, S. Hlioui, H. Ben Ahmed, M. Gabsi, and M. LoBue, "3-D formal resolution of maxwell equations for the computation of the no-load flux in an axial flux permanent-magnet synchronous machine," IEEE Trans. Magn., vol. 48, no. 1, pp. 128-136, Jan. 2012.
[19] J. Azzouzi, G. Barakat, and B. Dakyo, "Quasi-3-D analytical modeling of the magnetic field of an axial-flux permanent-magnet synchronous machine," IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 748-752, Dec. 2005.
[20] H. Tiegna, Y. Amara, and G. Barakat, "A new quasi-3-D analytical model of axial flux permanent magnet machines," IEEE Trans. Magn., vol. 50, no. 2, pp. 748-752, Feb. 2014.