بهينهسازي چندهدفه موتورهاي با آهنرباي سطحي با روش مدلسازي تحليلي جابهجايي قطبهاي آهنربا
محورهای موضوعی : مهندسی برق و کامپیوتروحید زمانی فرادنبه 1 , صمد تقیپور بروجنی 2
1 - دانشگاه شهركرد
2 - دانشگاه شهركرد
کلید واژه: مدل تحليلي جابهجايي آهنربا گشتاور دندانه محتواي هارمونيكي بهينهسازي چندهدفه چگالي شار,
چکیده مقاله :
در اين مقاله يك مدل تحليلي براي مطالعه اثر جابهجايي قطبها در ماشينهاي با آهنرباي سطحي در شرایط بیباری ارائه شده است. از مهمترین نمایههای رفتاری ماشین آهنربایی در حالت بیباری گشتاور دندانه و محتوای هارمونیکی چگالی شار فاصله هوایی میباشند. اگرچه روش جابهجايي آهنرباهاي روتور، گشتاور دندانه را كاهش ميدهد ولي تقارن نيمموج فرد در قطبهاي روتور را از بين برده و سبب ايجاد هارمونيكهاي مکانی زوج در توزيع چگالي شار ماشين ميشود. از آنجايي که وجود هارمونيكهاي غير از هارمونيك اصلی، به ويژه هارمونيکهاي مرتبه پايين، سبب توليد ضربان گشتاور ميشود، حذف آنها بسيار ضروري و مهم ميباشد. با استفاده از مدل تحليلي فراهمشده به بهينهسازي همزمان گشتاور دندانه و نسبت هارمونيك مکانی اصلي به هارمونيكهاي مکانی مرتبه بالاتر چگالي شار فاصله هوايي اقدام شده است. روش بهينهسازي استفادهشده الگوريتم جستجوي مستقيم میباشد. از آن جهت كه دو متغير ذكرشده در تابع هدف از يك جنس نميباشند، از مقادير نرماليزهشده متغيرها در تابع هدف استفاده شده است. همچنين نتايج بهينهشده براي ضرايب وزني مختلف به دست آورده و در نهايت نتايج بهينهشده با روش المان محدود تأييد شدهاند.
In the presented work an analytical model is developed for the pole-shifting method in the surface-mounted PM machine at no-load condition. The machine cogging torque and the harmonic spectrum of the air gap flux density are most no-load indexes of the machine performance. It is shown that, although, the pole-shifting reduces the machine cogging torque; it destroyed the half-odd symmetry in the PMs and produces even harmonics in the air gap flux density. The even harmonics of the air gap flux density, results in undesired torque pulsations. Using the developed analytical model and the direct search method a multi-objective optimization is carried out for the machine cogging torque and the total harmonic distortion of the air gap flux density. Since, the considered variables are not in a same unite; a normalized technique is applied. Finally, the developed model and the obtained results are verified by finite element analysis.
[1] L. Zhu, S. Z. Jiang, and Z. Q. Zhu, "Analytical method for minimizing cogging torque in permanent magnet machines," IEEE Trans. on Magn., vol. 45, no. 4, pp. 2020-2031, Apr. 2009.
[2] T. M. Jahns and W. L. Soong, "Pulsating torque minimization techniques for permanent magnet AC motor drives: a review," IEEE Trans. on Indus. Electronics, vol. 43, no. 2, pp. 321-330, Apr. 1996.
[3] D. C. Hanselman, "Effect of skew, pole count and slot count on brushless motor radial force, cogging torque and back EMF," in Elect. Eng. Proc. Elect. Power Appl., vol. 44, no.5, pp. 325-330, Sep. 1997.
[4] M. S. Islam and T. Sebastian, "Issues in reducing the cogging torque on mass produced permanent magnet brushless DC motor," IEEE Trans. on Magn, vol. 43, no. 9, pp. 813-820, May-June 2004.
[5] Z. Q. Zhu and D. Howe, "Influence of design parameters on cogging torque in permanent magnet machines," IEEE Trans. on Energy Convers, vol. 15, no. 4, pp. 407-412, Dec. 2000.
[6] M. Dai, A. Keyhani, and T. Sebastian, "Torque ripple analysis of a PM brushless DC motor using finite element method," IEEE Trans. on Energy Convers, vol. 19, no. 1, pp. 40-45, Mar. 2004.
[7] N. Bianchi and S. Bolognani, "Design techniques for reducing the cogging torque in surface mounted PM motors," IEEE Trans. on Ind. Applicat, vol. 38, no. 5, pp. 1259-1265, Sep. 2002.
[8] S. M. Hwang, et al., "Various design techniques to reduce cogging torque by controlling energy variation in permanent magnet motors," IEEE Trans. on Magn., vol. 37, no. 4, pp. 2806-2909, Jul. 2001.
[9] S. M. Hwang and J. B. Eom, "Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing," IEEE Trans. on Magn., vol. 36, no. 5, pp. 3144-3146, Sep. 2000.
[10] Y. Lin, Y. Hu, and T. Lin, "A method to reduce the cogging torque of spindle motors," J. of Magnetism and Magnetic Materials, vol. 209, no. 1-3, pp. 180-182, Feb. 2000.
[11] N. Bianchi and S. Bolognani, "Torque harmonic compensation in a synchronous reluctance motor," IEEE Trans. on Energy Convers, vol. 23, no. 2, pp. 466-473, Jun. 2008.
[12] D. Zarko, D. Ban, and T. Lipo, "Analytical solution for cogging torque in surface permanent-magnet motors using conformal mapping," IEEE Trans. on Magn., vol. 44, no. 1, pp. 52-65, Jan. 2008.
[13] P. Jin and S. Fang, "Analytical magnetic field analysis and prediction of cogging force and torque of a linear and rotary permanent magnet actuator," IEEE Trans. on Magn., vol. 47, no. 10, pp. 3004-3007, Oct. 2011.
[14] S. Taghipour Boroujeni and V. Zamani, "A novel analytical model for no-load, slotted, surface-mounted PM machines: air gap flux density and cogging torque," IEEE Trans. on Magn., vol. 51, no. 4, article. 8104008, Apr. 2015.
[15] Z. Azar and Z. Q. Zh, "Influence of electric loading and magnetic saturation on cogging torque, back-EMF and torque ripple of PM machines," IEEE Trans. on Magn., vol. 48, no. 10, pp. 2650-2958, Oct. 2012.
[16] D. K. Cheng, Field and Wave Electromagnetics, Addison Wesley Publishing Company, 1983.
[17] Z. Q. Zhu and D. Howe, "Instantaneous magnetic field distribution in brushless permanent magnet dc motors, part i: open-circuit field," IEEE Trans. Magn., vol. 29, no. 1, pp. 124-135, Jan. 1993.
[18] Z. Q. Zhu and D. Howe, "Instantaneous magnetic field distribution in brushless permanent magnet dc motors, part II: armature reaction field," IEEE Trans. Magn., vol. 29, no. 1, pp 136-142, Jan. 1993.
[19] A. Varahram, J. R. Mohassel, and K. Mafinezhad, "Optimization of array factor in linear arrays using modified genetic algorithm," International J. of Engineering, Trans. B, vol. 174, no. 6, pp. 367-380, Dec. 2004.