آموزش شبکه عصبی MLP در طبقهبندی دادهها با استفاده از روش GSA
محورهای موضوعی : مهندسی برق و کامپیوتر
مریم دهباشیان
1
,
سیدحمید ظهیری
2
1 - دانشگاه بیرجند
2 - دانشگاه بیرجند
کلید واژه:
چکیده مقاله :
تاکنون شیوههای مختلفی برای طبقهبندی داده ارائه شده است اما در این میان شبکههای عصبی مخاطبان بیشتری را به خود جذب کردهاند. مهمترین مسئله در این نوع از طبقهبندیکنندهها انتخاب روشی مناسب برای آموزش شبکههای عصبی است. متداولترین روش آموزشی شبکههای عصبی روش پسانتشار خطا است که همگرايي کُند و توقف در نقاط بهينه محلي از مهمترین نقاط ضعف آن محسوب میشود. رویکرد جدید محققین استفاده از الگوریتمهای ابتکاری در فرایند آموزش شبکههای عصبی است. در این مقاله پیشنهاد استفاده از روش آموزشی نوینی به نام الگوریتم جستجوي گرانشي (GSA) در آموزش شبکههای عصبی بهمنظور طبقهبندی دادهها ارائه میشود. روش GSA آخرين و جديدترين نسخه از انواع روشهاي بهينهسازي هوش جمعي است که با الهام از مفاهيم جرم و نيروي جاذبه و با شبيهسازي قوانين مرتبط با آن ارائه شده است. در این مقاله با استفاده از روش GSA یک شبکه عصبی MLP جهت طبقهبندی پنج مجموعه داده مرجع آموزش داده میشود. همچنین کارایی روش پیشنهادی در آموزش و آزمایش شبکه عصبی با دو روش آموزشی پسانتشار خطا و بهینهسازی گروه ذرات مقایسه میشود. نتایج نهایی نشان میدهند در اکثر موارد روش GSA قابلیت چشمگیری در طبقهبندی صحیح دادهها دارد. بهعلاوه در آزمایشات انجامگرفته ویژگی منحصر بهفردی از روش GSA پدیدار شد و آن پایداری نسبتاً عالی در طبقهبندی صحیح دادهها در تمام موارد بود. از نقطه نظر معیار زمانی نیز روش GSA نسبت به روش PSO در زمان کمتری به پاسخ مناسب دست مییابد.
Nowadays, several techniques have presented for data classification. One of these techniques is neural network that has attracted many interests. In this classifier, selection a suitable learning method is very important for training of the network. Error back propagation is the most usual training method of neural networks that late convergence and stopping in local optimum points are its weakness. New approach in neural networks training is the usage of heuristic algorithms. This paper suggests a new learning method namely gravitational search algorithm (GSA) in training of neural network for data classification. GSA method is the latest and the most novel version of swarm intelligence optimization methods. This algorithm is inspired fby the law of Newtonian gravity and mass concept in nature. In this paper, a MLP neural network is trained for classification of five benchmark data set by GSA method. Also, the proposed method efficiency in training and testing of neural network compared with those of two training methods error back propagation and particle swarm optimization. Final results showed the GSA method extraordinary performance for data correct classification in most of cases. Also, in these experiments the GSA method produced stable results in all of cases. In addition, the run time of GSA method is shorter than that of the PSO.
