طراحی عناصر نوری پراشی دریچه- محدود دوبعدی با تعمیم روش طیف زاویهای تکراری
محورهای موضوعی : مهندسی برق و کامپیوترسیدحسین کاظمی 1 , میرمجتبی میرصالحی 2 , امیررضا عطاری 3
1 - دانشگاه فردوسی مشهد
2 - دانشگاه فردوسی مشهد
3 - دانشگاه فردوسی مشهد
کلید واژه: عنصر نوری پراشی دریچه محدود روش طیف زاویهای تکراری شکلدهنده پرتو D-FDTD3,
چکیده مقاله :
روش طیف زاویهای تکراری (IAS) برای طراحی عناصر نوری پراشی دریچه - محدود یکبعدی D -FADOE)1( توسط ملین و نوردین ارائه شده است. ما این روش را برای طراحی عناصر نوری پراشی دریچه - محدود دوبعدی، گسترش داده و با استفاده از آن چند نمونه قطعه اپتیکی طراحی کردهایم. نمونه اول یک منشعبکننده 1 به 7 است که یک پرتو تابشی را در مود اصلی، به هفت تار نوری تک مود با بازده پراش 84 درصد جفت میکند. نمونه دوم یک تختکننده پرتو گوسی لیزری با بازده پراش 8/74 درصد و نمونه سوم یک منشعبکننده پرتو 1 به 3 نامتقارن است. نمونه چهارم شامل سه ریزعدسی با فواصل کانونی مختلف است. الگوی مطلوب توزیع شدت برای این نمونهها در میدان راه نزدیک قرار گرفته است. در ادامه دقت روش تعمیمیافته را با مقايسه نتايج با روش سهبعدی تفاضل محدود در حوزه زمان D-FDTD)3( با شرایط مرزی جاذب PML بررسی کردهایم. همچنین یک نمونه منشعبکننده 1 به 5 ساخته شده و نتایج آزمایش آن ارائه شده است.
The iterative angular spectrum (IAS) method has been introduced by Mellin and Nordin for designing finite-aperture diffractive optical elements (FADOEs). We have extended this method to two-dimensional FADOEs and used it to design some optical devices. The first device is a 1-to-7 beamsplitter that couples an optical beam to seven single-mode optical fibers with a diffraction efficiency of 84%. The second device is a beam-shaper that converts a Gaussian beam into a nearly flat beam with a diffraction efficiency of 74.8%. The third design is a 1-to-3 asymmetric beamsplitter. The fourth design includes three microlenses with different focal lengths. The desired intensity distribution patterns of all these designs are located at the near field region. We have investigated the sensitivity of the extended method by comparing the results obtained by this method with those obtained by three-dimensional finite difference time domain (3-D FDTD) method using perfect matched layer (PML). Also, a 1-to-5 beamsplitter is fabricated and the experimental results are presented.
[1] G. Nordin, J. Meier, P. Deguzman, and M. Jones, "Micropolarizer array for infrared imaging polarimetry," J. Opt. Soc. Am. A, vol. 16, no. 5, pp. 1168-1174, 1 May 1999.
[2] G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, "Diffractive optical element for stokes vector measurement with a focal plane array," in Polarization: Measurement, Analysis, and Remote Sensing II, Dennis H. Goldstein, David B. Chenault, Editors, Proc. of SPIE, vol. 3754, pp. 169-177, 1999.
[3] D. W. Prather, "Design and application of subwavelength diffractive lenses for integration with infrared photodetectors," Opt. Eng., vol. 38, no. 5, pp. 870-878, 1 May 1999.
[4] M. Karlsson and F. Nikolajeff, "Fabrication and evaluation of a diamond diffractive fan - out element for high power lasers," Optics Express, vol. 11, no. 3, pp. 191-198, 10 Feb. 2003.
[5] T. G. Jabbour and S. M. Kuebler, "Vectorial beam shaping," Optics Express, vol. 16, no. 10, pp. 7203-7213, 12 May 2008.
[6] M. J. Thomson, J. Liu, and M. R. Taghizadeh, "Iterative algorithm for the design of free-space diffractive optical elements for fiber coupling," Applied Optics, vol. 43, no. 10, pp. 1996-1999, 1 Apr. 2004.
[7] J. Caley, M. J. Thomson, J. Liu, A. J. Waddie, and M. R. Taghizadeh, "Diffractive optical elements for high gain lasers with arbitrary output beam profiles," Optics Express, vol. 15, no. 17, pp. 10699-10704, 20 Aug. 2007.
[8] J. Jiang and G. P. Nordin, "A rigorous unidirectional method for designing finite aperture diffractive optical elements," Optics Express, vol. 7, no. 6, pp. 237-242, 11 Sep. 2000.
[9] D. W. Prather, M. S. Mirotznik, and J. N. Mait, "Boundary integral methods applied to the analysis of diffractive optical elements," J. Opt. Soc. Am. A, vol. 14, no. 1, pp. 34-43, 1 Jan. 1997.
[10] D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, "Vector - based synthesis of finite aperiodic subwavelength diffractive optical elements," J. Opt. Soc. Am. A, vol. 15, no. 6, pp. 1599-1607, 1 Jun. 1998.
[11] J. W. Goodman, Introduction to Fourier Optics, Roberts & Company, Englewood, 2005.
[12] S. H. Kazemi, M. M. Mirsalehi, and A. R. Attari, Design of two-dimensional finite aperture diffractive optical elements using the flip -flop method of optimization, Photon08, Abstract book, Edinburgh, Heriot-Watt University, UK, p. 7, Aug. 2008.
[13] J. Bengtsson, "Design of fan-out kinoforms in the entire scalar diffraction regime with an optimal-rotation-angle method," Appl. Opt., vol. 36, no. 32, pp. 8435-8444, 10 Nov. 1997.
[14] J. Stigwall and J. Bengtsson, "Design of array of diffractive optical elements with inter-element coherent fan-outs," Optics Express, vol. 12, no. 23, pp. 5675-5683, 15 Nov. 2004.
[15] R. W. Gerchberg and W. O. Saxton, "Practical algorithm for the determination of phase from image and diffraction plane pictures," Optik, vol. 35, no. 7, pp. 237-250, 2 Apr. 1972.
[16] F. Wyrowski and O. Bryngdahl, "Iterative Fourier-transform algorithm applied to computer holography," J. Opt. Soc. Am. A, vol. 5, no. 7, pp. 1058-1065, Nov. 1988.
[17] F. Di, Y. Yingbai, J. Guofan, T. Qiaofeng, and H. Liu, "Rigorous electromagnetic design of finite - aperture diffractive optical elements by use of an iterative optimization algorithm," J. Opt. Soc. Am. A, vol. 20, no. 9, pp. 1739-1746, Sep. 2003.
[18] S. D. Mellin and G. P. Nordin, "Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design," Optics Express, vol. 8, no. 13, pp. 705-722, 18 Jun. 2001.
[19] D. M. Sullivan, "An unsplit step 3-D PML for use with the FDTD method," IEEE Microwave and Guided Wave Letters, vol. 7, no. 7, pp. 184-186, Jul. 1997.
[20] D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, IEEE Press Series on RF and Microwave Technology, 2000.
[21] A. J. Clay, M. Braun, A. J. Waddie, and M. R. Taghizadeh, "Analysis of multimask fabrication errors for diffractive optical elements," Applied Optics, vol. 46, no. 12, pp. 2180-2188, 20 Apr. 2007.