منشاء و کاربرد پلیمر¬های زیست¬کندسوز¬کننده در صنایع سلولزی
محورهای موضوعی :مهرنوش توکلی 1 , علی قاسمیان 2
1 - دانشگاه علوم کشاورزی و منابع طبیعی
2 - دانشگاه علوم کشاورزی و منابع طبیعی گرگان
کلید واژه: پلیمر¬, های زیست¬, کندسوز¬, کننده, زیست¬, توده, لایه¬, ی زغالی, لیگنین, صنایع سلولزی ,
چکیده مقاله :
امروزه، صنایع پلیمری به منظور کاهش اثرات زیست محیطی، اقدام به تولید موادی جدید با منشاء طبیعی کرده-اند. در این راستا، دو نوع زیست پلیمر توسعه یافته است. اولین گروه زیست پلیمر ها، براساس ساختار های ماکرومولکولی موجود در طبیعت همچون سلولز، لیگنین، نشاسته، آلژینات و ... بوده که اغلب آن ها مشتقات حاصل از صنایع پایدار سلولزی می باشند. این ساختار های سرشار از اکسیژن، اگر چه، پایداری حرارتی کمی دارند، گرمای نسبتا کمی درطول احتراق آزاد کرده و اغلب توانایی تشکیل لایه ی زغالی را دارند. سایر زیست پلیمر ها بر پایه ی مولکول های سنتزی حاصل از منابع طبیعی می باشند. نه تنها پلیمر ها بلکه تمام مواد افزودنی مورد استفاده نیز باید برای اصلاح ویژگی ها و به منظور تحقق توسعه ی پایدار، دارای منشاء زیستی باشند. تحقیقات بی شماری به توسعه ی پلیمر های زیست کندسوز کننده ی حاصل از منابع اولیه ی مختلف، اختصاص یافته است. این پلیمر های زیست کندسوز-کننده را می توان به تنهایی و یا به عنوان جزئی از یک سیستم پیچیده تر استفاده کرد. این امر به ویژه برای مولکول-های سرشار از فسفر نظیر DNA یا فیتیک اسید و مولکول های دارای لایه ی زغالی مانند لیگنین صدق می کند. تمامی تحقیقات بررسی شده در این مقاله، نشان دهنده ی هدف اصلی در دستیابی و توسعه ی 100% مواد زیستی مناسب در کاربرد هایی است که به سطح زیادی از کندسوز کنندگی نیاز دارند. زیست مولکول های مختلف حاصل از صنایع سلولزی نیز مورد توجه ویژه در کندسوز کنندگی می باشند.
Nowadays, In order to reduce environmental footprint, polymer industry has started to develop new materials based on natural resources. Two kinds of biobased polymers can be developed. The first one corresponds to macromolecular structures existing in nature as cellulose, lignin, starch, alginate and so-on that most of them are probably the ones that derived from well-established cellulosic industries. Nevertheless, the thermal stability of these rich in oxygen structures are limited, they release relatively little heat during burning and are often able to char. Other biobased polymers are made up of molecules synthesized from natural resources. Not only polymers but also all additives used to modify their properties can be biobased to meet sustainable development. Intensive research is devoted to develop flame retardant biobased polymers from various raw resources. These flame retardant biobased polymers can be used directly as they are, alone or as a component of a more complex system. This is especially true when the molecules are phosphorus-rich as DNA or phytic acid or charring as lignin. All the efforts reviewed in this paper, show that a major objective is to develop 100 % biobased materials suitable for applications requiring high flame retardancy level. Different biomolecules from the cellulosic industry are also the most promising in flame retardancy.
1. توکلی م، قاسمیان ع، بررسی اثر عوامل مختلف شیمیایی بر قابلیت کندسوزی کاغذ و محصولات لیگنوسلولزی، فصلنامه علمی- ترویجی علوم و فنون بسته¬بندی، 35، 37-1397،28.
2. Sonnier R., Taguet A., Ferry L., Lopez-Cuesta J.M., Towards Bio-Based Flame Retardant Polymers, Springer Briefs in Molecular Science; Springer International Publishing: Cham, Switzerland. 2018.
3. Mngomezulu M.E., John M.J., Jacobs V., Luyt, A.S., “Review on Fammability of Biofibres and Biocomposites,” Carbohydrate Polymers. 111, 149–182, 2014.
4. Nguyen, T.M., Chang S.C., Condon, B., “The Comparison of Differences in Fammability and Thermal Degradation Between Cotton Fabrics Treated with Phosphoramidate Derivatives,” Polymers for Advanced Technologies. 25(6), 665–672, 2014.
5. Anastas P.T., Warner J.C., Green Chemistry: Theory and Practice, Oxford: Oxford University Press. 1998.
6. Laoutid F., Bonnaud L., Alexandre M., Lopez-Cuesta J.M., Dubois P., “New Prospects in Flame Retardant Polymer Materials: From Fundamentals to Nanocomposites,” Materials Science & Engineering R-Reports. 63, 100-125, 2009.
7. Hornsby P.R., Chapter 7: “Fire-Retardant Fillers,” In Fire Retardancy of Polymeric Materials., Wilkie, C. A. & Morgan, A. B., Eds., CRC Press. 163-182, 2010.
8. Wang N., Liu Y., Xu C.H., Liu Yu., Wang Q., “Acid-Base Synergistic Flame Retardant Wood Pulp Paper with High Thermal Stability,” Journal of Carbohydrate Polymer. 178, 123–130, 2017.
9. Biron M., Biobased Additives and Their Future, http://polymeradditives.specialchem.com/tech-library/article/bio-based-additives-their future. 2011.
10. Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G., An Overview of the Chemical Composition of Biomass, Fuel. 89, 913-933, 2010.
11. Dubois J.L., Refinery of the Future: Feedstock, Processes, Products, in Biorefinery: From Biomass to Chemicals and Fuels, Berlin: De Gruyter. 19-47, 2012.
12. Richmond P.A., Occurence and Functions of Native Cellulose, in Biosynthesis and Biodegradation of Cellulose, New-York: Marcel Dekker, Inc. 5-23, 1991.
13. Shen D.K., Gu S., The Mechanism for Thermal Decomposition of Cellulose and Its Main Products, Bioresour. Technol. 100, 6496-6504, 2009.
14. Dorez G., Ferry L., Sonnier R., Taguet A., Lopez-Cuesta J.M., Effect of Cellulose, Hemicellulose and Lignin Contents on Pyrolysis and Combustion of Natural Fibers, J. Anal. Appl. Pyrolysis. 107, 323-331, 2014.
15. Zobel H.F., Molecules to Granules: A Comprehensive Starch Review, Starch/Stärke. 40, 44-50, 1988.
16. Liu X., Wang Y., Yu L., Tong Z., Chen L., Liu H., Li X., Thermal Degradation and Stability of Starch Under Different Processing Conditions, Starch/Staerke. 65,48-60, 2013.
17. Logithkumar R., Keshavnarayan A., Dhivya S., Chawla A., Saravanan S., Selvamurugan N., A Review of Chitosan and Its Derivatives in Bone Tissue Engineering, Carbohydr. Polym. 151, 172-188, 2016.
18. Britto D.de., Campana-Filho S.P., Kinetics of the Thermal Degradation of Chitosan, Thermochim. Acta. 465, 73-82, 2007.
19. Moussout H., Ahlafi H., Aazza M., Bourakhouadar M., Kinetics and Mechanism of the Thermal Degradation of Biopolymers Chitin and Chitosan Using Thermogravimetric Analysis, Polym. Degrad. Stab. 130, 1-9, 2016.
20. McHugh D J., A Guide to the Seaweed Industry. 441, 2003.
21. Soares J.P., Santos J.E., Chierice G.O., Cavalheiro E.T.G., Thermal Behavior of Alginic Acid and Its Sodium Salt, Eclet. Quim. 29, 57-63, 2004.
22. Kim J.S., Pathak T.S., Yun J.H., Kim K.P., Park T.J., Kim Y., Paeng K.J., Thermal Degradation and Kinetics of Alginate Polyurethane Hybrid Material Prepared from Alginic Acid as a Polyol, J. Polym. Environ. 21, 224-232, 2013.
23. Anastasakis K., Ross A.B., Jones J.M., Pyrolysis Behaviour of The Main Carbohydrates of Brown Macro-Algae, Fuel. 90, 598-607, 2011.
24. Whiteford D., Proteins: Structure and Functions, John Wiley & Sons, Ltd. 2005.
25. Structure P., Acids A., Chapter 12. Analytical Pyrolysis of Proteins, Tech. Instrum. Anal. Chem. 20, 373-397, 1998.
26. Mocanu A.M., Moldoveanu C., Odochian L., Paius C.M., Apostolescu N., Neculau R., Study on the Thermal Behavior of Casein Under Nitrogen and Air Atmosphere By Means of the TG-FTIR Technique, Thermochim. Acta. 546, 120-126, 2012.
27. Bates A.D., Maxwell A., DNA Topology, Oxford University Press, 2005.
28. Christie W.W., Han X., Lipid Analysis: Isolation, Separation, Identification and Lipidomic Analysis, Cambridge: Woodhead Publishing Ltd. 2012.
29. Fahy E., Subramaniam S., Brown H.A., Glass C.K., Merrill A.H., Murphy R.C., Raetz C.R.H., Russell D.W., Seyama Y., Shaw W., Shimizu T., Spener F., VanMeer G., VanNieuwenhze M.S., White S.H., Witztum J.L., Dennis E.A., A Comprehensive Classification System for Lipids, J. Lipid Res. 46- 839-861, 2005.
30. Bedier A.H., Hussein M.F., Ismail E.A., El-emary M.M., Jojoba and Castor Oils as Fluids for the Preparation of Bio Greases: A Comparative Study, International Journal of Scientific & Engineering Research. 5, 755-762, 2014.
31. By P., “World's Largest Science , Technology & Medicine Open Access book publisher The Oil Palm Wastes in Malaysia.”
32. Gouveia De Souza A., Oliveira Santos J.C., Conceição M.M., Dantas Silva M.C., Prasad S., A Thermoanalytic and Kinetic Study of Sunflower Oil, Brazilian J. Chem. Eng. 21, 265-273, 2004.
33. Montero De Espinosa L., Meier M.A.R., Plant Oils: The Perfect Renewable Resource for Polymer Science?!, Eur. Polym. J. 47, 837-852, 2011.
34. Romani A., Lattanzio V., Quideau S., Recent Advances in Polyphenol Research, Volume 4. oxford: Wiley Blackwell. 2014.
35. Brebu M., Vasile C., Thermal Degradation of Lignin- A Review, Cellul. Chem. Technol. 44, 353-363, 2010.
36- Gaugler M., Grigsby W J., Thermal Degradation of Condensed Tannins from Radiata Pine Bark, J. Wood Chem. Technol. 29, 305-321, 2009.
37. Camino G., Costa L., Luda di Cortemiglia M.P., Overview of Fire Retardant Mechanisms, Polym. Degrad. Stab. 33, 131-154, 1991.
38. Laoutid F., Bonnaud L., Alexandre M., Lopez-Cuesta J.M., Dubois P., New Prospects in Flame Retardant Polymer Materials: From Fundamentals to Nanocomposites, Mater. Sci. Eng. R Reports. 63, 100-125, 2009.
39. Michałowicz J., Duda W., Phenols- Sources and Toxicity, Polish J. Environ. Stud. 16, 347-362, 2007.