ارزیابی کارایی ساختار داخلی واحدهای تصمیم گیرنده در گذشته ، حال و آینده با استفاده از تحلیل پوششی دادههای شبکهای پویا و شبکه عصبی مصنوعی
محورهای موضوعی : مدیریت صنعتیجواد نیک نفس 1 , محمد علی کرامتی 2 , جلال حقیقت منفرد 3
1 - دانشگاه آزاد اسلامی واحد تهران مرکزی
2 - دانشگاه آزاد اسلامی واحد تهران مرکزی
3 - دانشگاه آزاد اسلامی واحد تهران مرکزی
کلید واژه: تحلیل پوششی دادهای شبکهای, تحلیل پوششی دادهای شبکهای پویا, شبکه عصبی مصنوعی, ارزیابی کارایی, بانک,
چکیده مقاله :
مدلهای تحلیل پوششی دادهای شبکهای و مدلهای تحلیل پوششی دادهای شبکهای پویا نمیتوانند کارایی آینده ساختار داخلی واحدهای تصمیمگیرنده را در آینده ارزیابی نمایند. به عبارت دیگر همه مدلهای شبکهای و شبکهای پویا عملکرد گذشته واحدها و ساختار درونی آنها را ارزیابی کرده و کارایی و ناکارایی آنها را سنجش میکنند و در نهایت بر اساس آن ارزیابی، رتبهبندی مینمایند. در این مقاله برآنیم که کارایی بخشهای جمعآوری سپرده و وامدهی در شعب بانک را در آیندهارزیابی کنیم. تا بتوانیم ناکارایی در ساختار درونی یک واحد را قبل از وقوع مطلع شده و از آن جلوگیری نماییم. این رویکرد میتواند نقش مدیران را از ناظر و ارزیاب به برنامهریز تغییر دهد. ابتدا با استفاده از ادبیات موضوع و نظر خبرگان ساختار درونی شعب بانک و متغیرهای شبکه در آن مشخص شد. سپس مقادیر متغیرها با استفاده از شبکه عصبی مصنوعی برای دو دوره آتی پیشبینیشده است. و در نهایت یک مدل شبکهای پویا با استفاده از مقادیر دورههای گذشته و مقادیر پیشبینیشده فرموله شده و با استفاده از آن کارایی شعب و ساختار داخلی آن در گذشته، حال و آینده ارزیابی شده است.
Network data envelopment analysis models and dynamic network data envelopment analysis models cannot evaluated the future performance of the internal structure of decision-making units .In other words, all NDEA and DNDEA models evaluate the past performance of their DMUs and their internal structure, and measure their efficiency and inefficiency, and ultimately rank them based on that assessment .In this paper, we are going to evaluation the future efficiency of deposit and lending sections in bank branches. In order to notified inefficiencies in the internal structure of a unit before the occurrence, we will prevent it.This approach can change the role of managers from the evaluator to the planner .First, using the literature of the subject and opinion of the experts, the structure of the bank branches and the network variables were determined .Then, the values of variables are forecasted using the artificial neural network for the next two periods.Finally, a DNDEA model is formulated using the values of past periods and predicted values.Using its efficiency, its branches and its internal structure have been evaluated in the past, present and future.
1- رضا سلیمانی دامنه، منصور مومنی، امین مصطفایی، & محسن رستمی مال خلیفه. توسعه يك مدل تحلیل پوششی دادههای شبکهای پویا برای ارزیابی عملکرد بانکها. چشم انداز مدیریت صنعتی، 7(1), 67-89.
2- Akther, S., Fukuyama, H., & Weber, «Estimating two-stage network slacks-based inefficiency: An application to Bangladesh banking». Omega,41(1), 88-96.4.
3- Avkiran, N.K., (2015). «An illustration of dynamic network DEA in commercial banking including robustness tests ». Omega, 55, 141-150.
4- Banker, R. D., Charnes, A., Cooper, W. W., (1984). «some models for estimating technical and scale inefficiencies in data envelopment analysis». Management Science. 30(9), 1078-1092.
5- Berger, A. N., & Humphrey, D. B. (1997). «Efficiency of financial institutions:International survey and directions for future research». European Journal of Operational Research, 98, 175–212.
6- Charnes, A., Cooper, W. W., & Rhodes, E. (1978). «Measuring the efficienc of decision making units». European Journal of Operational Research, 2, 429-444.
7- Chen, C., Yan, H., (2011). «Network DEA model for supply chain performance evaluation». European Journal of Operational Research, 213(1), 147–55.
8- Chen, Y., Cook, W. D., Li, N., Zhu, J., (2009). «Additive efficiency decomposition in two-stage DEA». European Journal of Operational Research, 196(3), 1170-1176.
9- Chun Tsai, M., Ping Lin, S., Chan Cheng, C., Ping Lin, Y., 2009. «The consumer loan default predicting model-An application of DEA-DA and neural network». Expert System. Appl. 36 (4), 11682e11690.
10- Cook, W. D., Zhu, J., Bi, G., Yang, F., (2010). «Network DEA: additive efficiency decomposition». European Journal of Operational Research, 207(2), 11-22.
11- Drake, L., Hall, M., & Simper, R. (2009). «Bank modelling methodologies: Acomparative non-parametric analysis of efficiency in the Japanese banking secto»r. Journal of International Financial Institutions and Money, 19(1), 1-15.
12- Desheng, W.U., Yang, Z., Liang, L., 2006. «Using DEA-neural network approach to evaluate branch efficiency of a large Canadian bank». Expert Syst. Appl. 31 (1) 108e115.
13- Du, J. A., Liang, L. A., Chen, Y., Cook, W. D., Zhu, J., (2011). «A bargaining game model for measuring performance of two-stage network structures». European Journal of Operational Research, 210 (2), 390-397.
14- Emrouznejad, A., Shale, E., 2009. «A combined neural network and DEA for measuring efficiency of large scale datasets». Comput. Ind. Eng. 56 (1), 249e254.
15- Färe, R., (1991). «Measuring Farrell efficiency for a firm with intermediate inputs». Academia Economic Papers, 19, 329-340.
16- Färe, R., Grosskopf, S., (1996). «Productivity and intermediate products: A frontier approach». Economics letters, 50(1), 65-70.
17- Fare, R., & Grosskopf, S. (2000). «Network DEA. Socio-Economic Planning Sciences», 34, 35-49.
18- Färe, R., Whittaker, G., (1995). «an intermediate input model of dairy production using complex survey data». Journal of Agricultural Economics, 46(2), 201-213.
19- Farsijani, H., Arman, M.H., Hoseinbeigi, A. & Jalili, A. (2011). «Presenting DEA model by input-output oriented approach». Journal of Industrial Management Perspective, 1, 39-56.
20- Fukuyama, H., & Matousek, R. (2016). «Modelling Bank Performance: A Network DEA Approach», European Journal of Operational Research, doi: 10.1016/j.ejor.2016.10.044
21- Fukuyama, H., & Weber, W. L. (2009a). «Estimating indirect allocative inefficiency and productivity change». Journal of the Operational Research Society, 60(11), 1594–1608.
22- Fukuyama, H., & Weber, W. L. (2009b). «A directional slacks-based measure of technical inefficiency». Socio-Economic Planning Sciences, 43(4), 274–287.
23- Fukuyama, H., & Weber, W. L. (2010). «A slacks-based inefficiency measure for a twostage system with bad outputs». Omega, 38(5), 239–410.
24- Fukuyama, H., & Weber, W.L. (2015a). «Measuring Japanese bank performance: A dynamic network DEA approach». Journal of Productivity Analysis, 44(3), 249-264.
25- Fukuyama, H., & Weber, W.L. (2016a). «Japanese bank productivity, 2007- 2012: A dynamic network approach. Mimeo».
26- Holod, D., & Lewis, H. F. (2011). «Resolving the deposit dilemma: A new DEA bank efficiency mode». Journal of Banking and Finance, 35, 2801-2810.
27- Ibiwoye, A., Ajibola, E., Sogunro, A.B., 2012. «Artificial neural network model for predicting insurance insolvency». Int. J. Manag. Bus. Res. 2 (1), 59e68.
28- Jahanshahloo, G. R., Hadi-Vencheh, A., Foroughi, A. A., Kazemi-Matin, R., (2004). «Inputs/ outputs estimation in DEA when some factors are undesirable». Applied Mathematics and Computations, 156(1), 19–32.
29- Kao, C., (2009). «Efficiency decomposition in network data envelopment analysis: A relational mode»l. European Journal of Operational Research, 192(3), 949–962.
30- Kao, C. (2009b). «Efficiency measurement for parallel production systems». European Journal of Operational Research, 196, 1107-1112.
31- Kao, C. (2014a). «Efficiency decomposition for general multi-stage systems in data envelopment analysis». European Journal of Operational Research, 232, 117- 124.
32- Kao, C. (2014). «Network data envelopment analysis: A review». European journal of operational research, 239(1), 1-16.
33- Kao, C., Hwang, S. N., (2008). «Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan». European Journal of Operational Research, 185(1), 418-429.
34- Kao, C., & Hwang, S. N. (2010). «Efficiency measurement for network systems: IT impact on firm performance». Decision Support Systems, 48, 437-446.
35- Kao, C., & Liu, S. T. (2014). «Multi-period efficiency measurement in data envelopment analysis: The case of Taiwanese commercial banks». Omega, 47, 90-98.
36- Kao, C., & Liu, S. (2009). «Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks». European Journal of Operational Research, 196(1), 312-322.
37- Khushalani, J., & Ozcan, Y. A. (2017). «Are hospitals producing quality care efficiently? An analysis using Dynamic Network Data Envelopment Analysis (DEA) ». Socio-Economic Planning Sciences, 60, 15-23.
38- Krakovsky, R., Forgac, R., 2011. «Neural network approach to multidimensional data classification via lustering». In: IEEE. 9th International Symposium on Intelligent Systems and Informatics, pp. 169e174.
39- Lewis, H. F., & Sexton, T. R. (2004). «Network DEA: efficiency analysis of organizations with complex internal structure». Computers and Operations Research, 31(9), 1365-1410.
40- Liang, L., Cook, W. D., Zhu, J., (2008). «DEA models for two- stage processes: Game approach and efficiency decomposition». Naval Research Logistics (NRL), 55(7), 643-653.
41- Lin, T. Y., & Chiu, S. H. (2013). «Using independent component analysis and network DEA to improve bank performance evaluation». Economic Modelling, 32, 608-616.
42- Liu, S. T. (2009). «Slacks-based efficiency measures for predicting bank performance. Expert Systems with Applications, 36(2), 2813–2818.
43- Lozano, S. (2016). «Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector». Omega, 60, 73-84.
44- Luo, X. M. (2003). «Evaluating the profitability and marketability efficiency of large banks: An application of data envelopment analysis». Journal of Business
45- Lu, P., Rosenbaum, M.S., 2003. «Artificial neural network and grey system for the prediction of slope stability». Nat. Hazards 30 (3), 383e398.
46- McCulloch, W., Pitts, W., 1943. «A logical calculus of the ideas immanent in nervous activity». Bull. Math. Biophys. 5 (4), 115e133.
47- Melchiorre, C., Matteucci, M., Azzoni, A., Zanchi, A., 2008. «Artificial neural networks and cluster analysis in landslide susceptibility zonation». Geomorpho 94 (3),379e400.
48- Moreno, P. & Lozano, S. (2016). «Super SBI Dynamic Network DEA approach to measuring efficiency in the provision of public services». International Transactions In Operational Research, 1-21.
49- Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. «Learning representations by back propagating errors». Nature 323 (6088), 533e536.
50- Seiford, L. M., & Zhu, J. (1999). «Profitability and marketability of the top 55 US commercial banks». Management Science, 45, 1270-1288.
51- Soleymani Mal Khalifeh, R., Momeni, M, Mostafaee, A. & Soleymani Mal Khalifeh, M. (2017). «Presenting Dynamic NDEA model For Evaluation Efficiency of Banks». Journal of Industrial Management Perspective, 25, 67-89. (In Persian)
52- Soltanzadeh, E., & Omrani, H. (2018). «Dynamic network data envelopment analysis model with fuzzy inputs and outputs: An application for Iranian Airlines». Applied Soft Computing, 63, 268-288.43.
53- Tone, k., & Tsutsui, M. (2010). «Dynamic DEA: A slacks-based measure approach». Omega, 38, 3-4.
54- Tone, T., & Tsutsui, M. (2014). «Dynamic DEA with network structure: A slacks-based measure approach». Omega, 42, 124-131.
55- Tone, K., & Tsutsui, M. (2009). «Network DEA: A slacks-based measure approach». European Journal of Operational Research, 197, 243-252.
56- Wacker, J. G. (1998). «A definition of theory: research guidelines for different theory-building research methods in operations management». Journal of Operations Management, 16(4), 361-385.
57- Wu, Y., Ting, I., Lu, W., Nourani, M. & Kweh, Q. (2016). «The impact of earnings management on the performance of ASEAN banks». Economic Modelling, 53, 156-165.
58- Zhang, G.P., 2000. «Neural networks for classification: a survey». IEEE Trans. Syst. Man. Cybern. C. Appl. Rev. 30 (4), 451e462.
59- Zhang, W.J., 2011. «Simulation of arthropod abundance from plant composition». Comput. Ecol. Softw. 1 (1), 37e48.
60- Zhang, W.J., Wei, W., 2009. «Spatial succession modeling of biological communities: a multi-model approach». Environ. Monit. Assess. 158 (1e4), 213e230.
61- Zha, Y., Liang, N., Wu, M. & Bian, Y. (2016). «Efficiency evaluation of banks in china: A dynamic two-stage slacks-based measure approach», Omega.
62- Zhou, Z., Sun, L., Yang, W., Liu, W., Ma, C., (2013). «A bargaining game model for efficiency decomposition in the centralized model of two-stage systems». Computers & Industrial Engineering,