شناسایی و تحلیل عوامل موثر بر موفقیت رهنگاری فناوری با استفاده از تکنیک مدل¬سازی ساختاری تفسیری
محورهای موضوعی : مدیریت تکنولوژیافسانه احمدي 1 , سيدسپهر قاضي نوري 2 , فاطمه ثقفي 3
1 - مركز تحقيقات سياست علمي كشور
2 - دانشگاه تربيت مدرس
3 - دانشگاه تهران
کلید واژه: رهنگاری فناوری, مدل¬, سازی ساختاری تفسیری, عوامل موفقیت,
چکیده مقاله :
رشد سريع فناوري، افزایش هزینه، پیچیدگی و جهانی شدن رقابت، تطابق سرمایه گذاریهای فناورانه با نیازهای سازمان را ضروي نموده است. لذا مديريت فناوري و نوآوری از طريق رويکردهاي ساختار يافته و انعطاف پذيری مانند رهنگاشت فناوري براي تصميم سازي براي سياستگذاران ضروری می نماید. استفاده از مزایای اجرای رهنگاری بدون شناسایی و اولویت بندی عوامل موثر بر آن غیر ممکن است. هدف از این مقاله بکارگیری روش مدل سازی ساختاری تفسیری برای تحلیل تعاملات و سطح بندی عوامل موثر بر موفقیت رهنگاری فناوری است بدین منظور ابتدا با مرور ادبیات عوامل مؤثر بر موفقیت رهنگاری فناوری شناسایی گردید سپس جهت سطح بندی این عوامل روش مدل سازی ساختاری تفسیری بکارگرفته شد. براي جمع آوري داده ها از پرسشنامه و توزيع آن در بين 17 نفر از خبرگان استفاده شد. با تحليل يافته ها، عوامل مؤثر در چهار سطح و دو خوشه دسته بندی شدند. بیشترین تاثیرگذاری مربوط به عوامل"تامین منابع مالی"، "حمایت و تعهد مدیریت ارشد"، "پذیرش رهنگاری"، "مشارکت مناسب افراد"، " دسترسی به داده ها، اطلاعات و دانش مورد نیاز " و "وجود تسهیل گر و مشاور"، می باشند. بیشترین تاثیرپذیری را عامل " کیفیت سند رهنگاشت " و " انعطاف پذیری در برابر تغییرات لازم با بروز رسانی رهنگاشت " به خود اختصاص دادند.
With increasing cost, complexity and speed of technological changes and global competition, to ensure that technological investment is consistent and aligned to present and future needs of the organization, industry and country has become the most important challenges for policy makers and managers. So, technology management and innovation through a structured and flexible approach such as TRM is necessary. However Road mapping projects implementation and use of its advantages is impossible without identifying and prioritizing of success factors of technology road mapping. The aim of this work is using interpretive structural modeling technique to analyze the affecting factors on the success of technology road mapping. This helps improving technology road mapping process and identifying appropriate organizational policies. For this purpose, we firstly focus on literature review to extraction of technology road mapping success factors. Then, interpretive structural modeling technique is used for revealing the relation between those factors. For data gathering, 17 questionnaires are distributed among people with executive background or related working experience. The results show that the effective factors were classified in four levels. the most influencing factors are related to "commitment and support of management", "financial support" and "access to data, information and required knowledge", " appropriate participation of people ", "proper facilator" and " Accepting roadmapping ". The most influenced factors are "quality of roadmap" and "flexibility for reasonable changes by updating of roadmap"'.
[1] R. Phaal and G. Muller, “An architectural framework for roadmapping: Towards visual strategy,” Technol. Forecast. Soc. Change, vol. 76, no. 1, pp. 39–49, 2009.
[2] C. Kerr, R. Phaal, and D. Probert, “Cogitate, articulate, communicate: The psychosocial reality of technology roadmapping and roadmaps,” R D Manag., 2012.
[3] B. DE LAAT, “Conditions for effectiveness of roadmapping A CROSS-SECTIONAL ANALYSIS OF 80 DIFFERENT ROADMAPPING EXERCISES BASTIAAN DE LAAT,” EU-US Semin. NEW Technol. FORESIGHT, Forecast. Assess. Methods-sev. 13-14 May 2004.
[4] R. Phaal, E. O’Sullivan, M. Routley, S. Ford, and D. Probert, “A framework for mapping industrial emergence,” Technol. Forecast. Soc. Change, vol. 78, no. 2, pp. 217–230, Feb. 2011.
[5] R. N. Kostoff and R. R. Schaller, “Science and technology roadmaps,” IEEE Trans. Eng. Manag., vol. 48, no. 2, pp. 132–143, 2001.
[6] S. Lee and Y. Park, “Customization of technology roadmaps according to roadmapping purposes: Overall process and detailed modules,” Technol. Forecast. Soc. Change, 2005.
[7] H. Jeffrey, J. Sedgwick, and C. Robinson, “Technology roadmaps: An evaluation of their success in the renewable energy sector,” Technol. Forecast. Soc. Change, 2013.
[8] R. Phaal, C. Farrukh, and D. Probert, “A framework for supporting the management of technological innovation,” 2001.
[9] “canada industry-2007-eng.” [Online]. Available: http://ic.gc.ca/trm.
[10] O. Da Costa, M. Boden, and M. Friedewald, “Science and Technology Roadmapping for Policy Intelligence – Lessons for Future Projects,” Eur. Comm. - JRC - IPTS, p. 15, 2005.
[11] S. de Laat, B. and McKibbin, “The Effectiveness of Technology Road Mapping: Building a Strategic Vision.,” Minist. Econ. Aff., 2003.
[12] S. M. Lee, D. Y. Shin, and W. I. Lee, “Utilizing adopted organizational practices: the actual utilization of technology road map in R&D organizations,” Korean Strateg. Manag. Soc., vol. 12(2), pp. 53–81, 2009.
[13] D. Barker and D. Smith, “Technology foresight using roadmaps,” Long Range Plann., 1995.
[14] J. H. Lee, H. il Kim, and R. Phaal, “An analysis of factors improving technology roadmap credibility: A communications theory assessment of roadmapping processes,” Technol. Forecast. Soc. Change, 2012.
[15] N. Gerdsri, P. Assakul, and R. S. Vatananan, “Applying Change Management Approach to Guide the Implementation of Technology Roadmapping (TRM),” 2008.
[16] N. Geoff, “Industry Canada technology roadmapping: A strategy for success,” 2008-03-17]. http//strategis. ic. gc. ca/epic/internet/ …, 2004.
[17] صفدری رنجبر, “نوآوری باز نگاهی جامع بر مفاهیم، رویکردها، روندها و عوامل کلیدی موفقیت,” فصل نامه رشد فناوری, 1393.
[18] J. . Warfield, “Developing interconnected matrices in structural modeling,” IEEE Transcr. Syst. Men Cybern., vol. 4, no. 1, pp. 51–81, 1974.
[19] P. Charan, R. Shankar, and R. K. Baisya, “Analysis of interactions among the variables of supply chain performance measurement system implementation,” Bus. Process Manag. J., vol. 14, pp. 512–529, 2008.
[20] F. Talib, Z. Rahman, and M. Qureshi, “Analysis of interaction among the barriers to total quality management implementation using interpretive structural modeling approach,” Benchmarking, vol. 18, no. 4, pp. 563–587, 2011.
[21] M. D. Singh and R. Kant, “Knowledge management barriers : An interpretive structural modeling approach,” vol. 3, no. 2, pp. 141–150, 2008.
[22] V. Ravi and R. Shankar, “Analysis of interactions among the barriers of reverse logistics. Technological Forecasting & Social Changes,” 2004.
[23] A. Agarwal, R. Shankar, and M. K. Tiwari, “Modeling agility of supply chain,” Ind. Mark. Manag., vol. 36, no. 4, pp. 443–457, 2007.
[24] G. Wang, Y. Wang, and T. Zhao, “Analysis of interactions among the barriers to energy saving in China,” Energy Policy, vol. 36, no. 6, pp. 1879–1889, 2008.
[25] K. Mathiyazhagan, K. Govindan, A. NoorulHaq, and Y. Geng, “An ISM approach for the barrier analysis in implementing green supply chain management,” J. Clean. Prod., vol. 47, pp. 283–297, 2013.