گروهبندی همگن یادگیرندگان الکترونیکی بر اساس رفتار شبکه ای آنان
محورهای موضوعی : تخصصیمحمدصادق رضایی 1 , غلامعلی منتظر 2
1 - دانشگاه تربیت مدرس
2 - دانشگاه تربیت مدرس
کلید واژه: یادگیری الکترونیکی, گروهبندی همگن, شبکه عصبی ART, سبک یادگیری, یادگیری مشارکتی و تطبیقی,
چکیده مقاله :
گروهبندی همگن یادگیرندگان از نظر مشابهت سبک یادگیری، موجب افزایش توانمندی سامانههای یادگیری الکترونیکی در تطبیق یادگیری و ایجاد فضای مشارکتی میان یادگیرندگان میشود. در این مقاله سامانهای تشریح شده است که با استفاده از اطلاعات مربوط به رفتار شبکهای یادگیرندگان در محیط یادگیری الکترونیکی، گروههایی از یادگیرندگان را که از منظر سبک یادگیری مشابه هستند، شناسایی میکند. روش خوشهبندی ارائه شده برای تفکیک یادگیرندگان مبتنی بر ساختار شبکۀ عصبی ART و فرایند یادگیری شبکۀ عصبی Snap-Drift توسعه داده شده است. این شبکه امکان شناسایی گروههای یادگیرندگان را در فضای عدم قطعیت ویژگیهای مؤثر بر تفکیک گروهها، فراهم میسازد ضمن آنکه در این روش نیازی به دانستن تعداد مناسب گروهها نیست. عملکرد این سامانه در شناسایی گروههای یادگیرندگان در محیط یادگیری الکترونیکی بر اساس سبک یادگیری مورد ارزیابی قرار گرفته است. نتایج ارزیابی بر اساس معیارهای ارزیابی دیبویس – بولدین و خلوص و تجمع نشان میدهد روش پیشنهادی به طور کلی گروههای مناسبتر و دقیقتری را نسبت به روشهای دیگر ایجاد کرده است.
Automatic identification of learners groups based on similarity of learning style improves e-learning systems from the viewpoint of learning adaptation and collaboration among learners. In this paper, a new system is proposed for identifying groups of learners, who have similar learning style, by using learners’ behavior information in an e-learning environment. Proposed clustering method for separation of learners is developed based on ART neural network structure and Snap-Drift neural network learning process. This artificial network enables us to identify learners groups in uncertain group separation parameters, without knowing appropriate number of groups. The results of an empirical evaluation of the proposed method, which are based on two criteria, “Davies-Bouldin” and “Purity and Gathering”, indicate that our proposed method outperforms other clustering methods in terms of accuracy.