پترولوژی و ژئوشیمی افیولیت سیاه¬جنگل، شمال¬شرق آتشفشان تفتان
محورهای موضوعی :سعیده نیک بخت 1 , حبیب بیابانگرد 2 , ساسان باقری 3
1 - دانشگاه سیستان و بلوچستان
2 - دانشگاه سیستان و بلوچستان
3 - لوزان سویس
کلید واژه: افیولیت سیاهجنگل, تولئیتی, سوپراسابداکشن, زمیندرز سیستان, آتشفشان تفتان.,
چکیده مقاله :
افیولیت سیاهجنگل در شمال و شمال شرق کوه آتشفشانی تفتان در کمربند زمیندرز سیستان واقع میشود. این افیولیت(کرتاسه فوقانی) در داخل مجموعه فلیشی(ائوسن) برونزد دارد. سنگ های اصلی تشکیلدهنده این افیولیت شامل هارزبورژیت، لرزولیت، سرپانتینیت، اسپیلیت و گابرو می باشند. کانی های سازنده واحدهای اولترامافیک اُلیوین، ارتوپیروکسن وکلینوپیروکسن وکانیهای سازنده واحدهای مافیک کلینوپیروکسن و پلاژیوکلاز هستند. بافت غالب سنگهای اولترامافیکها، گرانولار و گابروها بافت افتیک، ساب افتیک و گرانولار دارند. تغییرات ژئوشیمیایی عناصر اصلی، فرعی و کمیاب در این سنگها، مشخص کرد که سنگهای بازیک و اولترابازیک مجموعه افیولیت سیاهجنگل حاصل ذوب بخشی و نه تبلور تفریقی هستند. نمودارهای عناصرخاکی به هنجار شده نسبت به کندریت و مورب و مقایسه آنها با موربهای عادی و غنیشده از یکسو و نمودارهای تفکیک شیمیایی، نسبتهای عناصر کمیاب و تغییرات عناصرNb ,Y ,U ,Ti و Zr در مقابل Zr/Nb از سوی دیگر نشان از مشابهت نمونهها با N-MORBمی باشد. همچنین نمودارهای عناصر انتقالی (V,Co,Cr,Ni) در برابر La/Ce و نمودارهای تغییرات نسبت های (La/Yb)N,La/Yb,La/Ce در مقابل (La/Sm)N نشان میدهد که این نسبت ها در مقایسه باN-MORB و E-MORB غنی شدگی دارند و مشابهت ژئوشیمیایی نمونهها بیشتر با نوع مورب عادی است. نمودارهای تمایز محیطهای تکتونوماگمایی نشان از وابستگی افیولیت سیاهجنگل به محیطهای سوپراسابداکشن دارد.
Siahjangal ophiolite is located in the North and Northeastern part of Taftan volcano in the Sistan Suture Zone (SSZ). This ophiolite (Upper Cretaceous) is exposed in the Flysch rocks (Eocene). Harzburgite, lherzolite, serpentine, spilite and gabbro are major rocks in this ophiolite. Ultramafic units have olivine, orthopyroxene and clinopyroxene minerals. Mafic units have clinopyroxene and plagioclase. Ultramafic rocks have mainly granular and gabbro rocks have ophitic, sub-ophitic and granular textures. Geochemical verities of major, minor and rare earth elements in the Siahjangal ophiolite revealed that the ultrabasic and basic rocks were formed due to partial melting than crystal differentiation. REE elements diagrams normalized to the Chondrite and MORB and their comparison with the normal and enriched MORBs, chemical differentiation diagrams, the ratios of accessory elements and changes of Zr, Nb, Y, U, Ti elements against Zr / Nb ratio all indicates the similarity to N-MORB. Transition elements diagrams (V, Co, Cr, Ni) against La / Ce ratio and the ratio of (La / Yb) N, La / Yb, La / Ce versus (La / Sm) N, show that these ratios compared with N-MORB and E-MORB represent enrichment and geochemical similarities to N-MORB. Tectonomagmatic diagrams show Siahjangal ophiolite belongs to supra-subduction zone.
سبکروح، م.،1394. ترکیب شیمیایی سنگ¬های مافیک و اولترامافیک از مجموعه¬ی افیولیتی غرب فنوج، شمال مکران ایران. پایاننامه کارشناسی ارشد دانشکده علوم، دانشگاه سیستان و بلوچستان،97.
- رئیسی اردلی،ف.،1394. ترکیب شیمیایی سنگ¬های اولترامافیک و مافیک افیولیتی در منطقه چاه بریش، شرق ایران. پایاننامه کارشناسی ارشد دانشکده علوم، دانشگاه سیستان و بلوچستان، 105.
- قلعه نویی، ر.،1390. ژئوشیمی و منشا کرومیت¬های پودیفرم از شمال غرب تا جنوب غرب زاهدان،جنوب شرق ایران. پایاننامه کارشناسی ارشد دانشکده علوم، دانشگاه سیستان و بلوچستان،272.
-گودرزی، ز.،1394. ژئوشیمی پریدوتیت¬ها و سنگ¬های مافیک منطقه دومک،شرق ایران. پایاننامه کارشناسی ارشد دانشکده علوم دانشگاه سیستان و بلوچستان،90.
- مهرپرتو، م. و پادیار، ف.،1382. شرح نقشه زمین¬شناسی 1:100000 تفتان. سازمان زمین¬شناسی و اکتشافات معدنی کشور.
- مصطفایی، ح.، 1391. ترکیب شیمیایی سنگ¬های اولترامافیک در ایالت زمین ساختی سیستان،شرق ایران. پایاننامه کارشناسی ارشد دانشکده علوم دانشگاه سیستان و بلوچستان،100.
Aoki, K. and Fujimaki, H., 1982. Petrology and geochemistry of Calc-alkaline andesite of presumed upper mantle origin from Itinome-gata, Japan. American Mineralogy, 67, 1-13.
Barragan, R., Geist, D., Hall, M., Larson, P. and Kurz, M., 1998. Subduction controls on the composition of lavas from the Ecuadorian Andes. Earth and Planetary Science Letters, 154,153-166.
Capedri, S. and Venturelli, G., 1979. Clinopyroxene composition of ophiolitic metabasalts in the Mediterranean area. Earth and planetary Science Letters, 43, 61-73.
Deer, W.A., Howie, R.A. and Zussman, J., 1996. An Introduction to Rock Forming Minerals. 14th Impression, Longman Group Limited, 528.
Fitton, G.J., James, D. and Leeman, W.P., 1991. Basic magmatism associated with late Cenozoic in the western United State, compositional variations in space and time. Journal Geophysical Research, 96, 13693-13711.
Goss, A.R. and Kay, S.M., 2009. Extreme high field strength element (HFSE) depletion and near-Chondritic Nb\Ta ratios in central Andeam adakite-like lavas. Earth and planetary Science Letters, 27, 997-109.
Hafman, A.W., 1988. Chemical differentiation of the earth the relationship between mantle, continental curst and oceanic crust. Earth and Planetary Science Letters, 90, 297-314.
Hafman, A.W., 2003. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: RW Carlson, Ed. Elsevier- Pergamon, Oxford, 42, 61-101.
Harker, A., 1909. The Natural History of Igneous Roks, Macmillian, New York, 845.
Irvan, T.N. and Bargar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 8, 523-548.
Kovalenko, V. I., Naumov, V. B., Girnis, A. V., Dorofeeva, V. A. and Yarmolyuk, V. V., 2010. Average composition of basic magmas and mantle sources of island arce and active continental margins estimate from the data on melt inclusions and quenched glasses of rocks. Petrology, 18:1-26.
Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Le Bas, M.J., Sabine, P.A., Sorensen, H., Streckeisen, A., Woolley, A.R. and Zanettin, B., 1989. A Classification of Igneous Rocks and Glossary of Terms Blackwell Oxford, 43, 825-1125.
Matthew, E., Brueseke, K.,William, K. and Hart, J., 2009. Intermediate composition magma production in an intracontinental setting: unusual andesite and dacite of the mid-Miocene Santa Rosa-Calico volcanic field, Northern Nevada. Journal of Volcanology and Geothermal Research, 188, 197-213.
Miyashiro, A., 1973. The Troodos ophiolitic complex was formed in an island arc. Earth and Planetary Science Letters. 19, 218-224.
Pearce, J.A., 1975. Statiscal analysis of major element patterns in basalt. Journal of Petrology, 17, 15-43.
Pearce, J.A., 1996. Sources and setting of granitic rock, Episodes, 19,120-125.
Reichow, M.K., Saunders, AD. and White, R.V.,2004. Geochemistry and petrogenesis of basalts from the West Siberian Basin, an extension of the Permo-Triassic Siberian Traps. Russia Lithos, 28,412-486.
Shervais, J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolite lavas. Earth and Planetary Science Letters, 57, 101-108.
Sirvastava, R.K. and Singh, R.K., 2004. Trace element geochemistry and genesis of Precambrian subalkaline mafic dikes from the Indian craton: Evidence for mantle metasomatism. Journal of Asian Earth Sciences, 23, 373-389.
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotope systematics of oceanic basalts: implication for mantle composition processes. In: Saunders AD, Norry MJ (Eds.), Magmatism in the ocean basins: Geological Society Special Publication, 313-345.
Whitney, J.A. and Evance, F., 2010. Origin and evolution of silicic magmas. Reviews in Economic Geology, 4, 183-203.
Wilson, M., 1989. Igneous Petrogenesis, a Global Tectonic Approach. Chapman and Hall, 466.
Winter, J., 2010. An Introduction to Igneous and Metamorphic Petrology. Pearson Prentice Hall, 702.