بیشینه¬سازی طول عمر شبکه¬های حسگر صوتی زیر¬آبی با جایگذاری بهینه گره¬های رله
محورهای موضوعی : عمومىزهرا محمدی 1 , محدثه سلیمان¬پور¬مقدم 2 , داریوش عباسی¬مقدم 3 , سیامک طالبی 4
1 - گروه مهندسی برق,دانشگاه شهید
2 - مجتمع آموزش عالی بم
3 - دانشگاه شهید باهنر کرمان
4 - Wireless communication, MIMO-OFDM
کلید واژه: شبکه¬های حسگر صوتی زیر¬آبی, گره¬های رله, طول عمر شبکه, مخابرات چند¬پرشی, برنامه¬ریزی محدب. ,
چکیده مقاله :
شبکه های حسگر صوتی زیر آبی به دلیل ویژگی های مطلوب خود و کاربرد های عملی گسترده در زمینه های ارتباطی مختلف، توجه زیادی را به خود جلب کرده اند. از آن جا که گره های حسگر زیر آبی دارای هزینه ی بالا و پیچیدگی جایگذاری هستند، افزایش طول عمر این شبکه ها از اهمیت زیادی برخوردار است. گره های رله نقش مهمی در کاهش فاصله مخابراتی و انرژی مصرفی دارند. اما، مسئله مهم قرار گیری بهره ور گره های رله اطراف گره های بحرانی شبکه به منظور جلوگیری از حذف آن ها و در نتیجه افزایش طول عمر شبکه است. برای این منظور، در این مقاله روشی جدید به نام جایگذاری بهره ور گره رله (ERS) معرفی شده است که شامل فرمول بندی کردن مکان هر گره رله به صورت یک مسئله بهینه سازی غیر محدب است. در حقیقت، وجود قیود تفاضل محدب منجر به غیر محدب شدن مسئله بهینه سازی پیشنهادی می شود و دستیابی به جواب بهینه را دشوار می سازد. از این رو، در گام بعد با پیشنهاد یک تبدیل جدید، مسئله مذکور به معادل محدب خود تبدیل می-شود. مهم ترین مزیت مسئله برنامه ریزی محدب، قابلیت دستیابی به جواب بهینه مسئله است. نتایج شبیه سازی نشان دهنده برتری عملکرد روش پیشنهادی در طول عمر و بهره وری نسبت به روش ابتکاری پیشین تنظیم گره رله (RA) است.
Underwater acoustic sensor networks (UASNs) have gained growing importance due to their desirable features and wide spread practical applications in many communication fields. Due to the high cost of underwater sensor nodes as well as implementation complexity, increasing the lifetime of UASNs is an important issue. Although relay nodes have an important role in reducing the transmission distance and energy consumption. But the efficient RNP (Relay Node Placement) to avoid the critical sensor nodes' elimination is the main problem, i.e., to preserve the connected network. For this aim this paper presents an innovative solution called an Efficient Relay node Setting (ERS) algorithm, which involves formulating the Relay Node Placement (RNP) as a non-convex optimization problem. Actually, due to the Difference Convex (DC) constraints the proposed RNP problem is a non-convex problem and finding an optimal solution is complicated. However, a novel transformation can be applied to DC constraints which converts the problem into its convex programming equivalent. Application of the convex programming offers the advantage of readily computing a global optimal solution. Simulation results confirm the superiority of the proposed scheme over the competing RA method in terms of network lifetime and efficiency.
[1] M. Erol-Kantarci, H. T. Mouftah, and S. Oktug, "A survey of architectures and localization techniques for underwater acoustic sensor networks," IEEE Communications Surveys & Tutorials, vol. 13, no. 3, pp. 487-502, 2011.
[2] S. Climent, A. Sanchez, J. V. Capella, N. Meratnia, and J. J. Serrano, "Underwater acoustic wireless sensor networks: advances and future trends in physical, MAC and routing layers," Sensors, vol. 14, no. 1, pp. 795-833, 2014.
[3] G. Qiao, Z. Babar, L. Ma, S. Liu, and J. Wu, "MIMO-OFDM underwater acoustic communication systems—A review," Physical Communication, vol. 23, pp. 56-64, 2017.
[4] M. Patil and R. C. Biradar, "A survey on routing protocols in wireless sensor networks," in Networks (ICON), 2012 18th IEEE International Conference on, 2012, pp. 86-91: IEEE.
[5] I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks: research challenges," Ad hoc networks, vol. 3, no. 3, pp. 257-279, 2005.
[6] A. Wadaa, S. Olariu, L. Wilson, M. Eltoweissy, and K. Jones, "Training a wireless sensor network," Mobile Networks and Applications, vol. 10, no. 1-2, pp. 151-168, 2005.
[7] E. L. Lloyd and G. Xue, "Relay node placement in wireless sensor networks," IEEE Transactions on Computers, vol. 56, no. 1, pp. 134-138, 2007.
[8] S. Misra, S. D. Hong, G. Xue, and J. Tang, "Constrained relay node placement in wireless sensor networks: Formulation and approximations," IEEE/ACM Transactions on Networking (TON), vol. 18, no. 2, pp. 434-447, 2010.
[9] K. Lu, G. Liu, R. Mao, and Y. Feng, "Relay node placement based on balancing power consumption in wireless sensor networks," IET wireless sensor systems, vol. 1, no. 1, pp. 1-6, 2011.
[10] A. Wahid, S. Lee, and D. Kim, "An energy-efficient routing protocol for UWSNs using physical distance and residual energy," in OCEANS 2011 IEEE-Spain, 2011, pp. 1-6: IEEE.
[11] A. Wahid, S. Lee, and D. Kim, "A reliable and energy‐efficient routing protocol for underwater wireless sensor networks," International Journal of Communication Systems, vol. 27, no. 10, pp. 2048-2062, 2014.
[12] N. Javaid, M. Shah, A. Ahmad, M. Imran, M. I. Khan, and A. V. Vasilakos, "An enhanced energy balanced data transmission protocol for underwater acoustic sensor networks," Sensors, vol. 16, no. 4, p. 487, 2016.
[13] M. Akbar, N. Javaid, A. H. Khan, M. Imran, M. Shoaib, and A. Vasilakos, "Efficient data gathering in 3D linear underwater wireless sensor networks using sink mobility," Sensors, vol. 16, no. 3, p. 404, 2016.
[14] J. U. Khan and H.-S. Cho, "A distributed data-gathering protocol using AUV in underwater sensor networks," Sensors, vol. 15, no. 8, pp. 19331-19350, 2015.
[15] K. Wang, H. Gao, X. Xu, J. Jiang, and D. Yue, "An energy-efficient reliable data transmission scheme for complex environmental monitoring in underwater acoustic sensor networks," IEEE Sensors Journal, vol. 16, no. 11, pp. 4051-4062, 2016.
[16] X. Du, K. Li, X. Liu, and Y. Su, "RLT code based handshake-free reliable MAC protocol for underwater sensor networks," Journal of Sensors, vol. 2016, 2016.
[17] H. U. Yildiz, "Maximization of underwater sensor networks lifetime via fountain codes," IEEE Transactions on Industrial Informatics, vol. 15, no. 8, pp. 4602-4613, 2019.
[18] H. U. Yıldız, "Improvement of underwater acoustic sensor networks performance with fountain codes," in 2019 27th Signal Processing and Communications Applications Conference (SIU), 2019, pp. 1-4: IEEE.
[19] B. Das, E. S. Mishra, and S. K. Sethi, "Enhancement of Lifetime of Acoustic Sensor using PEGASIS Algorithm in UASN," International Journal of Electronics, Electrical and Computational System (Mc Graw Hill Publication), vol. 6, no. 9, pp. 534-545, 2017.
[20] L. Liu, M. Ma, C. Liu, and Y. Shu, "Optimal relay node placement and flow allocation in underwater acoustic sensor networks," IEEE Transactions on Communications, vol. 65, no. 5, pp. 2141-2152, 2017.
[21] Z. Mohammadi, M. Soleimanpour-Moghadam, M. Askarizadeh, and S. Talebi, "Increasing the Lifetime of Underwater Acoustic Sensor Networks: Difference Convex Approach," IEEE Systems Journal, 2020.
[22] Z. Mohammadi, M. Soleimanpour-Moghadam, S. Talebi, and D. Abbasi-Moghadam, "A new optimization algorithm for relay node setting in underwater acoustic sensor networks," in 2018 3rd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), 2018, pp. 1-5: IEEE.
[23] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
[24] C.-Y. Chi, W.-C. Li, and C.-H. Lin, Convex optimization for signal processing and communications: from fundamentals to applications. CRC press, 2017.
[25] W. H. Thorp, "Analytic description of the low‐frequency attenuation coefficient," The Journal of the Acoustical Society of America, vol. 42, no. 1, pp. 270-270, 1967.
[26] J. Cao, J. Dou, and S. Dong, "Balance transmission mechanism in underwater acoustic sensor networks," International Journal of Distributed Sensor Networks, vol. 11, no. 3, p. 429340, 2015.
[27] N. Javaid, M. R. Jafri, Z. A. Khan, U. Qasim, T. A. Alghamdi, and M. Ali, "Iamctd: Improved adaptive mobility of courier nodes in threshold-optimized dbr protocol for underwater wireless sensor networks," International Journal of Distributed Sensor Networks, vol. 10, no. 11, p. 213012, 2014.
[28] R. Horst and N. V. Thoai, "DC programming: overview," Journal of Optimization Theory and Applications, vol. 103, no. 1, pp. 1-43, 1999.
[29] C. Detweiler, M. Doniec, I. Vasilescu, and D. Rus, "Autonomous depth adjustment for underwater sensor networks: Design and applications," IEEE/ASME Transactions on Mechatronics, vol. 17, no. 1, pp. 16-24, 2011.
[30] N. Nowsheen, G. Karmakar, and J. Kamruzzaman, "PRADD: A path reliability-aware data delivery protocol for underwater acoustic sensor networks," Journal of Network and Computer Applications, vol. 75, pp. 385-397, 2016.
[31] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.