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Abstract  
Opinion mining is a fundamental task in natural language processing. This paper focuses on extracting opinion structures: 

triplets representing an opinion, a part of text involving an opinion role, and a relation between opinion and role. We utilize 

the T5 generative transformer for this purpose. It also adopts a multi-task learning approach inspired by successful previous 

studies to enhance performance. Nevertheless, the success of generative models heavily relies on the prompts provided in the 

input, as prompts customize the task at hand. To eliminate the need for human-based prompt design and improve performance, 

we propose Automatic Prompt Construction, which involves fine-tuning. Our proposed method is fully compatible with  

multi-task learning, as we did so in our investigations. We run a comprehensive set of experiments on Multi-Perspective 

Question Answering (MPQA) 2.0, a  commonly utilized benchmark dataset in this domain. We observe a considerable 

performance boost by combining automatic prompt construction with multi-task learning. Besides, we develop a new method 

that re-uses a model from one problem setting to improve another model in another setting as a Transfer Learning application. 

Our results on the MPQA represent a new state-of-the-art and provide clear directions for future work. 
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1- Introduction 

Extracting opinion entities, such as opinion expressions, 

opinion holders, and opinion targets is one of the most 

interesting problems in Opinion Mining (OM), which  

clarifies Who expressed or experienced what type of 

cognitive state toward which entity? [1, 2, 3, 4]. A cognitive 

state can be defined as the state of a source (holder or 

experiencer of the cognitive state, also known as the agent) 

holding an attitude (via an opinionated expression within  

the text) toward a target [5, 6]. In this paper, we refer to the 

opinion expression as the expression, the opinion holder as 

the agent, and the opinion target as the target. We refer to 

the (expression, role, relation) triplet as an opinion structure. 

In fine-grained OM, an expression might be coupled with  

one or more roles (agents and/or targets). An expression 

may also not have any agent or target [7, 4]. In this paper, 

we focus on detecting expressions, agents, and targets, and 

the structures they form. Similar to much previous research 

[8, 2, 3, 1], we have focused on a subset of the Multi-

Perspective Question Answering (MPQA) 2.0 dataset in our 

paper. This subset is frequently used as a benchmark dataset 

in research focused on detecting opinion expressions and 

identifying their roles, such as agent and target. The MPQA 

Corpus contains news articles and other text documents 

manually annotated for opinions and other cognitive states. 

Examining prior work indicates that using the 

aforementioned dataset for fine-grained OM problems is a 

suitable choice, as most studies have relied solely on this 

dataset. In our perspective, MPQA is highly complex and 

has many aspects that remain unexplored. Mastering 

MPQA, of course, requires significant time. Previous work 

typically concentrated on using a tagging mechanism in 

order to label tokens and extract opinion expression and 

roles. However, the main drawback of using this approach 

is that it cannot capture cases where there is an overlap 

between opinion arguments (i.e., roles) of two different 
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opinion expressions, as one word can be assigned to only 

one tag. This approach does not adequately capture the 

essence of the problem. Xia et al. [3] proposed “SpanOM”, 

in which a two-step algorithm is adopted: 1) Binary 

prediction on word span in order to detect that the word span 

is an expression or role or neither. 2) Allocation of opinion 

relations to the pairs of (expression, role). Their approach 

solves the issue of overlapping opinion roles mentioned 

earlier, but on the other hand it has a high computational 

complexity and lack of explicit interaction between 

expressions and roles. The most recent research [9], solved 

the problem by proposing a neural transition model which 

is highly affected by language knowledge provided to the 

system. We propose a generative system called Generative 

Opinion Mining, the “GenOM” system. GenOM avoids the 

weaknesses of some previous studies and mainly uses 

modern architectures. Recent studies have demonstrated the 

success of using transformers [10, 11, 3, 12, 13, 14, 15, 16], 

such as Text-to-Text Transfer Transformer (T5) [17], which  

improve the performance compared to traditional machine 

learning algorithms, manual feature engineering and also 

deep CNNs and RNNs. In our research, due to the 

successful results of T5, we aim to utilize it. Furthermore, 

our model is not dependent on any external natural language 

prerequisites. In the current study, we address two settings. 

First, we predict the (expression, role, relation) triplet  

directly from a sentence (i.e. end-to-end setting). Second, 

we include the expression in the input and predict its roles 

(i.e. agents and targets) (called given expression setting). 

These two settings are also used in a number of previous 

studies and our proposed GenOM system is capable of 

performing in both. The problem can be viewed as several 

related sub-tasks, namely detecting the expression, the 

agent, and the target from the sentence, and detecting the 

agent and the target from the sentence and the expression. 

Because we have distinct but related sub-tasks, we can 

apply Multi-task Learning (MTL) which strongly improves 

performance. Following the standard methodology for fine-

tuning, we prepend to the sentence (or to the combination 

of sentence and expression in the given-expression setting) 

a prompt indicating the sub-task, which then prompts the 

model to generate that sub-task’s output. It turns out that 

finding an efficient prompt for a given problem by hand and 

trial-and-error is very time-consuming and problem-

dependent. Hence, we propose an approach for finding an 

efficient prompt automatically, Automatic Prompt 

Construction (APC). GenOM synthesizes each sub-task’s 

output and uses these results to assemble the predicted 

triplet (end-to-end setting) or pair (given-expression  

setting). Then, we measure our system’s performance by 

metrics used in the previous studies. Finally, by comparing 

our work to other research, we observe successful results of 

our proposed methods. We also show that using either MTL 

or APC strongly improves performance, compared to the 

simple use of transformers, and that these improvements are 

additive.  

The main contributions of our paper lie in the following key 

points: 

• Proposing a generative approach based on MTL to  solve 

the OM problem consists of three main tasks: 1) 

Expression prediction, 2) Roles prediction through an 

end-to-end manner, and 3) Roles prediction employing 

the given-expression method, referred to as the 

Opinion Role Labeling (ORL) problem in prior 

literature. 

• Suggesting and implementing the APC approach to 

improve the efficiency of generative prompt-based 

text-to-text models and obviate the requirement for 

manually crafted prompts. It offers a novel and 

efficient approach for optimizing prompts in today's 

widely used text-to-text language models. This 

approach could be used for any pre-trained large 

language model or transformer which accepts (or 

affected by) prefixes or prompts. It is worth mentioning 

that the T5 transformer has not been the only choice in 

the past years. Other text-to-text transformers such as 

BART [18] and FLAN-T5 [19] have been available 

since their presentation. However, we presume 

adopting models like T5 or BART was not successful 

in previous endeavors of other researchers as they are 

significantly dependent on input/output structure and 

prompts provided to them. 

•  Achieving state-of-the-art (SOTA) and near SOTA 

results in all benchmark tasks without using external 

sources of knowledge (e.g., parse tree information), 

and using only the base version (i.e., medium size in 

terms of parameters) of T5.  

The remainder of this paper is arranged as follows. In 

section 2, we review previous work. Then, in Section 3, we 

explain our Generative Opinion Mining, the “GenOM”, 

algorithm. Section 4 introduces the benchmark dataset, the 

experimental setup, and hyper-parameters with all essential 

details. In Section 5, after presenting our experimental 

results, we discuss our results. We also conducted a 

comprehensive comparison of our approaches with existing 
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successful algorithms. Finally, in Section 6, we conclude 

and outline the future work. 

2- Related Work 

Research in the OM field can be categorized into four 

groups. The first group consists of opinion expression 

extraction and labeling [20, 21, 22]. The second group is 

opinion structure recognition in an end-to-end fashion [23, 

24, 25, 9]. The third group of research is Opinion Role 

Labeling (ORL), which includes the expression in the input 

(i.e. given-expression setting) as a means to detect its 

corresponding opinion roles [1, 8, 2]. Afterwards, Xia  et al. 
[3] proposed a system to address OM in the most 

comprehensive way (i.e., including the end-to-end and 

given-expression tasks) and to overcome issues observed in 

the earlier works. As an illustration, inability to capture the 

semantic dependencies between words which are far apart 

is mentioned as one drawback of previous research. 

Prior research frequently used BMESO-based tags to 

unravel the problem. BMESO-based tagging tags every 

token with one of the BMESO tags. B, M, and E tags encode 

the beginning, middle, and ending word of a role, and the S 

and O tags represent single-word roles and other words [8]. 

Therefore, techniques based on Conditional Random Fields 

(CRF) seemed to be a good choice [21].  Another study [23] 

recommended using a specific type of recurrent neural 

networks, called Bi-directional Long Short Term Memory 

(BiLSTM), in combination with CRF to construct the 

BiLSTM-CRF model. Their intention is to assign a label to 

each word in the sentence. Subsequently, they designate the 

relation to the expression with the set of two features: 

assigned label and distance to the expression. In other 

research [25], they designed an end-to-end transition-based 

system which actually determines the expressions and roles. 

In other words, they encode the input sentence by a multi-

layer BiLSTM. Then, they detect opinion expressions and 

roles by using manually designed transition actions.  Quan 

et al. [24] derived Bidirectional Encoder Representations 

from Transformers (BERT) [26] contextualized 

representations of sentences in order to synthesize BERT 

and BiLSTM-CRF. In consonance with what was 

mentioned, models based on sequence tagging are not able 

to detect opinion roles (agent/target) corresponding to 

distinct expressions in a sentence. 

 

Table 1. Summary of Key Opinion Mining Studies, Methods, Models, and Identified Research Gaps.  

Study Methodology 
Utilized 

Model 
Main Findings Limitations 

Research Gap 

Addressed by The 
Study 

Xia et al. [3] 
Unified span-based approach 

with syntactic constituents 
SpanOM 

Improved detection of 
opinion expressions 

and roles using a span-

based method. 

High computational 
complexity, lack of explicit 

interaction between 

expressions and roles. 

Overcomes complexity 
and enhances interaction 

through generative 

modeling. 

Wu et al. [8] 

 

Neural transition model joined 

with PointNet 

Neural Transition 

Model 

Successfully detects 

opinion structures in 

an end-to-end fashion. 

Highly reliant on external 

syntactic knowledge, limited 

to end-to-end detection only. 

Proposes a generative 

approach that does not 

depend on external 

syntactic knowledge. 

Zhang et al. [7] 
MTL with Semantic Role 

Labeling (SRL) 

Semantic-aware 

BiLSTM-CRF 

Enhances opinion role 
labeling by 

incorporating SRL 

outputs as inputs. 

Depends heavily on SRL 
outputs, which may not 

always be available or 

reliable. 

Uses automatic prompt 
construction without 

reliance on external 

knowledge. 

Quan et al. [23] 

 

End-to-end joint opinion role 

labeling with BERT 

BiLSTM-CRF 

with BERT 

representations 

Combines BERT with 

BiLSTM-CRF for 
improved contextual 

understanding. 

Struggles with capturing 

complex opinion 
relationships and 

dependencies between 

distant words. 

Employs a generative 

model capable of handling 
complex opinion 

structures directly. 

Proposed 

Approach (This 

Study) 

Generative framework using 

MTL and APC 

T5 Transformer 

with MTL and 

APC 

Achieves state-of-the-

art performance, 

optimizes prompt 
construction 

automatically, and 

integrates end-to-end 

and given-expression 
settings for improved 

accuracy. 

Does not rely on external 
syntactic or semantic 

knowledge, simplifies model 

training, and reduces manual 

prompt design efforts. 

Introduces a novel 
generative approach 

combining MTL and APC, 

setting new benchmarks 

for opinion mining. 
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On the benchmark dataset, there is some research to adopt 

a variety of external knowledge to boost the 

performance. Marasović and Frank [1] used MTL with  

Semantic Role Labeling (SRL) to address the scarcity of 

data by leveraging the semantic knowledge.  Another team 

of researchers [8] utilized the SRL outputs as inputs to the 

OM system which results in a significant boost in 

performance. In another study [11], they used the rich 

representations of BERT to be fed in a deep BiLSTM-CRF 

model.  Xia et al. [3] suggested a new method instead of 

BMESO, that consists of three sub-tasks: 1) Opinion  

expression detection. 2) Opinion role detection. 3) Opinion  

relation detection. They perform these sub-tasks in the MTL 

fashion. In addition, they used syntactic constituents to 

enhance their performance. However, as noted by Wu et al. 

[9], it suffers from some issues. For instance, the 

computational complexity of their approach is very high 

(i.e., 𝒪(𝑛4)), due to the necessity of processing all possible 

spans. Also, when their model tries to capture interplays 

between opinion expressions and roles explicitly, it ends in 

failure. Recently, Wu et al. [9] designed a complex system 

for detecting opinion structures only in the end-to-end way. 

Their system comprises a neural transition model joined 

with a PointNet [27] in order to accurately find the 

boundaries of opinion expressions and roles. Similar to 

some other past research efforts, they utilize external syntax 

knowledge to improve their system. More precisely, there 

is a requirement of dependency structure and part-of-speech 

tags for each input. In Table 1, we provide a concise 

overview of the studies discussed in this section. This table 

highlights the key methods, models, and findings of each 

work, along with the research gaps our proposed approach 

aims to address. 

3- Proposed Method 

3-1- Formal Task Definition 

We adopt the task definition presented by Xia et al. [3]. 

Given an arbitrary sentence, say 𝑠 as input, where 𝑠 =
𝑤1,  𝑤2, … ,  𝑤𝑛 , the system tries to predict the gold-standard 

opinion triplets 𝒴 ⊆ E × O × R , where E  is the set of 

opinion expressions defined mathematically as E  =
 {𝑤𝑖 ,   … ,  𝑤𝑗 | 1  ≤ 𝑖  ≤ 𝑗  ≤ 𝑛}, O is the set of opinion roles 

defined as O  =  {𝑤𝑖 ,   … ,  𝑤𝑗  | 1  ≤ 𝑖  ≤ 𝑗  ≤ 𝑛} , and R  is 

the set of opinion relations ({agent ,  target }). While Xia et 

al. [3] use indices to represent text spans, we take a 

generative approach and actually generate words. Our 

proposed method is two-step: we recognize expressions (we 

can generate expressions standalone because they are not 

dependent on opinion roles explicitly), and then we predict 

the opinion role-expression pairs separately. More 

specifically, we will define three sub-tasks: i) Predicting 

expressions, ii) Predicting agent-expression pairs, and iii) 

Predicting target-expression pairs. These tasks could be 

done separately but we do them jointly, and after the 

prediction, we form triplets by linking these three sub-tasks’ 

outputs. See Section 3.6 for more details. 

3-2- T5 for Conditional Generation 

T5 [17] is an encoder-decoder transformer [28] which has 

been proposed to tackle problems in a generative manner 

supported by text-to-text learning. More precisely, we use 

T5 based on conditional generation [29]. The text 

generation task can be defined as learning a mapping 

𝑓: 𝑋 ⟶ 𝑌  from input 𝑋 to output 𝑌. Usually, 𝑋 and 𝑌 are 

sequences of tokens (words), which are denoted by 𝑋 =
𝑋1 𝑋2 … 𝑋𝑛  and  𝑌 = 𝑌1𝑌2 … 𝑌𝑚 , where 𝑋𝑖

(1 ≤ 𝑖 ≤ 𝑛)  and 

𝑌𝑗
(1 ≤ 𝑗 ≤ 𝑚)  show the 𝑖𝑡ℎ  and 𝑗 𝑡ℎ  token of input and 

output, respectively. In this kind of problem, the model 

intends to find Y to maximize the probability (we denote 

probability of event 𝐴  by 𝑃𝑟(𝐴)  throughout this paper) 

𝑃𝑟θ
(𝑌|𝑋) based on parameters of the model, 𝜃. 

It is possible to insert some additional information in the 

input of the model. Suppose 𝑃 = {𝑝1 , 𝑝2 , 𝑝3 , … , 𝑝𝑘 } is a  

series of tokens called “prompt tokens” which we prepend 

to the input 𝑋, which gives us the probability𝑃𝑟θ
(𝑌|[𝑃; 𝑋] ). 

To see the effect of an individual prompt, 𝜃 remains fixed. 

Instead of bounding ourselves to a fixed 𝑃 , we make 𝑃 

parameterized by , and hence it will have its own specific 

updatable parameters 𝜃𝑃 . This is the basis of the idea of our 

technique called APC we describe in Section 3.4. 

3-3- Multi-Task Leaning (MTL) 

As explained in Section 3.1, the expression, agent, and 

target prediction tasks are related. Previous research [1, 3] 

stressed the issue of data scarcity and they address it by 

taking advantage of MTL. We follow them in working with 

MTL. T5 accepts “prefix” terms, prepended to inputs. 

Prefixes can be thought as a specific type of prompt 

(described in Section 3.2). By adding several distinct 

prompts to the input, we can learn multiple tasks 

simultaneously, in which we are telling the model what task 

should be processed, and the model generates output 

appropriate for that task. When we apply MTL, we are 

increasing the number of data items (since we can bring in 

data items for different but related tasks). It can be also 

considered as a way of data augmentation method. We are 

comparing this approach to a scenario where a sentence is 

input into a generative model, and it is expected that the 

comprehensive output will encompass all tasks. 
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3-4- Automatic Prompt Construction (APC) 

Inspired by the idea of “prompt tuning” [29], we propose 

APC approach (as our novel contribution) consisting of two 

phases:  

1) Finding the optimal prompt tokens for a specific task 

automatically (which is usually called “soft prompt” 

tuning). We prepend prompt tokens (i.e., tokens of 𝑃) to the 

input tokens, and we try to maximize the likelihood of 𝑌by 

𝑃𝑟θ;θ𝑃
(𝑌|[𝑃; 𝑋] ) as the new conditional generation task. By 

doing backward propagation, gradient updates to the 

parameter 𝜃𝑃  will take place. After passing input (i.e., 𝑋) 

tokens to the T5 tokenizer, each token is converted to an ID. 

Then, T5 builds a 𝑛 by 𝑑 matrix (𝑋𝑒 ∈ ℝ𝑛×𝑑), where 𝑛 is 

the length of input tokens and 𝑑 is the size of embedding 

vectors contrived for T5 (because T5 comes in different 

sizes such as small, base, and large). The learnable prompt 

tokens embedding defined by us are represented as a matrix 

𝑃𝑒 ∈ ℝ𝑘×𝑑 . The next thing to do in phase 1 of our method is 

to append the T5 standard embedding of original input 

sequence to our updatable prompt embeddings. So, the 

concatenation of these two forms [𝑃𝑒 ; 𝑋𝑒
] ∈ ℝ

(𝑘+𝑛)×𝑑. As a 

conclusion, in phase 1 only the parameters in 𝑃𝑒  are 

updated. 

2) Transferring the optimal prompt tokens learned in phase 

1 to be used in the model’s fine-tuning. In other words, 𝑃𝑒  

learned from phase 1 acts as a series of normal tokens, but 

with the difference that these embeddings representing 

these tokens might not corresponds to a real word in 

language. They are new tokens known as “virtual tokens” 

in the Natural Language Processing (NLP) community. 

It should be noted that APC approach is efficient regarding 

the size of tra inable parameters. Mathematically, the 

number of trainable parameters added to the simple fine-

tuning is 𝒪(𝑘 ⋅ 𝑑) . Even though we consider maximum 

values, the number of parameters is negligible in 

comparison to the model parameters when doing fine-

tuning. 

3-5- MTL + APC 

APC can be applied on MTL-based tasks as well. This 

methodology is our novel contribution. The proposed 

approach is a combination of fixed prompt (also known as 

“hard prompt”) and soft prompt. More precisely, we extend 

𝑃  a  bit more and it is now equal to 𝑃 =
{𝑝1 , 𝑝2 , 𝑝3 , … , 𝑝𝑘 , 𝑝𝑘 +1, … , 𝑝𝑘 +𝑙}  where the first 𝑘  tokens 

are the same trainable tokens as in Section 3.4 which 

actually is shared among all tasks, and the remaining 𝑙 

tokens are hard prompts that customizes each task. 

It is possible to consider a dedicated soft prompt for each 

task, but our initial experiments indicate no improvement to 

the results, and furthermore, it is not as efficient as our 

method in the number of training parameters and runtime. 

To the best of our knowledge, there are no other similar 

works for tackling MTL problems in the context of prompt 

tuning in such a way. In this scenario, the number of tasks 

does not affect the number of trainable parameters. 

As an illustration, Fig. 1 shows the difference between soft 

prompts and hard prompts. Soft prompts consist of a set of 

learnable parameters or word embeddings that can be 

optimized through standard training procedures. In contrast, 

hard prompts are fixed character strings (i.e., text) that are 

manually determined and remain constant throughout the 

process. 

 

 

Fig. 1: The comparison between soft and hard prompt. 
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3-6- Triplet Forming Algorithm 

After generating outputs by model, we need to link them in 

order to find triplets as (expression, role, relation). 

3-6-1-End-to-end Setting 

In the end-to-end manner, we consider outputs of the 

expression prediction task as a set of expressions, say  𝐸. 

Also, the set of predicted agent-expression pairs is 

designated as  𝐴�̂� , and set of predicted target-expression 

pairs as 𝑇�̂�. We form the set of final predictions as the union 

of:  

 

which yields us the proper triplets of the task definition 

presented in Section 3.1. It is notable that when the model 

predicts an incorrect expression, its agent and target will be 

ignored in model’s evaluation. In other words, correct 

expression prediction is the precondition for agents and 

targets evaluation.  

3-6-2-Given-Expression Setting 

To address the problem in the given-expression setting, we 

have fed expression with the sentence in the input. Hence, 

the set of expressions, say 𝐸, is revealed and given. With  

this condition, we only have two outputs: the set of 

predicted agent items �̂�, and the set of predicted target items 

𝑇. We form the set of final predictions as the union of:  

 

 

 

Fig.2: Integrating given-expression model to improve end-to-end 

predictions by feeding predicted expressions and roles. 

 

 
1
 https://pytorch.org/ 

2
 https://spacy.io/ 

3
 https://www.nltk.org/ 

3-7- Integrating Given-Expression Model (Int) 

As it is shown in Fig. 2, we use predicted outputs of the end-

to-end model to be fed into our saved given-expression 

model in order to see the effect by querying several tasks. It 

turns out by applying integrating idea, we get a boost in 

different prediction tasks. In our point of view, based on the 

error analysis (provided in Section 5.2) and observations of 

miss-matches, a  percentage of false predicted items differs 

in not important words such as stop-words. Therefore, we 

believe that the fine-tuned end-to-end model outputs are of 

sufficiently high quality to accurately identify expression 

spans, even though some words at the beginning or end may 

occasionally be omitted. Performance of our system in the 

given-expression setting demonstrates its excellence as 

well. By supplying these expressions to the given-

expression model, we can identify those that closely  

resemble gold standard expressions and determine the 

corresponding roles for each one. Then, by comparing the 

new predictions with the old ones, we can revise the 

predictions. This revision process mainly relies on the 

correlation rate between the two sets of predictions and is 

based on the improvements observed in the development set 

performance. We suggest this application of models to be 

considered as a novel idea of Transfer Learning in NLP. 

In this part of our research, we explain the dataset we 

exploited, the evaluation metrics we report, the setup of our 

experiments and other details involving training procedure. 

3-8- Dataset and Settings 

As mentioned earlier, we employed the most frequently 

used dataset, MPQA 2.0, in order to carry out our 

experiments. We mimic the data split of previous work [9, 

3, 8, 2]  and conduct 5-fold cross-validation run. We set the 

random seed to a constant number to make the results 

reproducible. It’s worth mentioning that, in line with prior 

research as well as considering the intricate complexity and 

granularity of the MPQA, our exclusive focus has been on 

this dataset. 

Our models were developed using the PyTorch 1  deep 

learning framework and we performed the models on a 

single NVIDIA A100-SXM4-40GB GPU. We also utilized  

packages such as spaCy2 and NLTK3, along with the scikit-

learn library 4 , NumPy 5 , and Matplotlib 6 . The T5-base 

model and its tokenizer, which were obtained from the 

4
 https://scikit-learn.org/stable/ 

5
 https://numpy.org/ 

6
 https://matplotlib.org/ 
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Hugging Face Transformers library1, were also employed in 

our implementation. 

3-9- Details of Input/Output Design 

Since we are using T5 to solve this OM problem in the 

generative way, the design of input and output structure is 

essential. Hence, we will go into detail by examples in this 

section. Please note that samples of input and output are 

presented here are real ones used in implementations. To 

develop the input, we use prompts to make tasks 

distinguishable and more learnable by T5. In the end-to-end 

approach, we use one prompt set, but it also possible to have 

more. For the given-expression setting, we give the 

sentence and the expression using two different prompt sets. 

Upper parts of Fig. 3, 4, and 5 indicate input structure used 

in our system. At the output, in the end-to-end setting we 

use “=” (equal sign) to show allocation of an opinion role 

(agent/target) to an expression, i.e. “agent1 = expression1”. 

If there are more than one item, we split them by “|” (pipe) 

symbol. It operates precisely in accordance with the triplet  

forming algorithm described in the end-to-end setup 

(Section 3.6.1). Finally, for the given expression manner, 

we only divide opinion role spans by “|” sign. As depicted 

in the lower part of Fig. 3, outputs for opinion roles are 

forming pairs of (role, expression), which are grouped with  

the “=” character. It functions accurately in alignment with 

the triplet forming algorithm outlined in the given-

expression setup (Section 3.6.2). Despite this configuration 

and design of this type of output reflecting the concept 

pretty well, it also results the best among other choices we 

examined in our initial experiments.  

Nevertheless, we do not require the expression prediction 

sub-task to produce its outputs in this way. The reason we 

are doing this is to make a harmony between all of tasks’ 

outputs. It seems if input and output of several tasks at hand 

executing by T5, be quite identica l in format, the model 

performs better. For illustration, see Fig. 3, 4, and 5. 

Prefixes are highlighted in red. Sentences are highlighted in 

aqua. Opinion roles and expressions are highlighted in 

yellow and green respectively. Prefix (prompt) phrases are 

depicted in all pictures are examples and they could get 

changed and replace by the APC mechanism. In our 

assertion that the fixed set of prompts could be substituted 

by the APC mechanism, we are referring to a system that 

automatically adds a collection of learnable vectors to the 

prompts throughout the training process. These vectors are 

dynamically updated, thereby improving the model's 

performance across various tasks. It is essential to highlight 

that these vectors may not directly represent actual words 

(unlike our standard prompt words); rather, they exist 

exclusively within the embedding space and are inserted at 

appropriate positions in the input sequence when converting 

words into their embedding vectors. 

 

 

 

Fig. 3: An example of input (up) and output (down) with multiple opinion role-expression pairs used in the experiments in the end-to-end setting. 

 

 

 

Fig. 4: An example of input (up) and output (down) with one opinion role used in the experiments in the given -expression setting when querying its targets 

 
1
 https://github.com/huggingface/transformers 
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Fig. 5: An example of input (up) and output (down) with two opinion 
roles used in the experiments in the given-expression setting when 

querying its agents. 

 

3-10- Hyper-parameters and Training Details 

The number of prompt tokens is an important hyper-

parameter in our experiments. We tried different number of 

tokens in our experiments (i.e., 20, 50, 100, and 150 tokens). 

In the end-to-end setting, we get the best results with 100 

tokens. On the other hand, in the given-expression setting, 

the results are reported using 20 tokens. Dropout rate of T5 

transformer equals to its default value. The batch size is 16 

and we use the Adam optimizer. The learning rate (LR) and 

number of epochs (Epochs) for each model are depicted in 

Table 2. The loss function considered for training is the 

default one for training T5 models. We select the model (or 

those weights we require) that performs best on the 

development set data. 

By following previous research on the issue of prompt 

tokens initialization [30, 29], we categorize all methods in 

three groups: 1) Uniformly sample from the 

range [−0.5, 0.5]. 2) Select from vocabulary (or a specific 

subset of the whole vocabulary). 3) Select from class labels. 

As we do not encounter a classification problem, we only 

tested methods 1 and 2. In the experiments, we did not 

observe a notable variation in the results. Therefore, due to 

the quicker convergence of method 2, we chose to sample 

random tokens from the vocabulary.  

Table 2: Learning rate and epoch number count of different models. 

Model Type LR Epochs 

End-to-end fine-tuning 1e-4 70 

Given-expression fine-tuning 1e-4 100 

Prompt tokens learning 0.3 300 

3-11- Evaluation Metrics 

To keep up with previous works (e.g., Xia et al. [3]) and 

make our results comparable, we employ Precision, Recall, 

and F1 score (in some cases, we only show F1) to evaluate 

our experimental results using the Exact match setting (i.e., 

Exact P, R, and F1), in which we have a true positive (TP) 

for calculating recall and precision if and only if the entire 

sequence of tokens is predicted exactly. Additionally, we 

utilize two auxiliary metrics known as Binary (i.e., Binary 

F1) and Proportional match (i.e., Proportional F1). The 

proportional metric measures the maximum portion that a 

predicted item matches its gold-standard item, and counts 

this fraction as a TP in calculating recall and precision. The 

binary metric yields a TP if a  predicted sequence overlaps 

with its gold-standard sequence in at least one token. We 

present the formulas for Precision, Recall and F1 score as 

follows. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  = 
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

(1) 

𝑅𝑒𝑐𝑎𝑙𝑙  =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
   

(2) 

𝐹1 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ∗  𝑅𝑒𝑐𝑎𝑙𝑙  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙   
   

(3) 

4- Results Analysis and Discussion 

In this section, the experimental results in both end-to-end 

and given-expression settings are presented. Furthermore, 

we compared our method with other established successful 

methods. In the proceeding tables, “GenOM” shows our 

proposed method and “Standalone” shows that the model 

solely predicts expressions. “MTL”, “Prompt”, and “Int” 

show our multi-task learning, automatic prompt 

construction, and integration ideas, respectively. “+” sign 

indicates the combination of certain methods within our 

approach. In the end-to-end setting, we compare our results 

to: BiLSTM-CRF1 [23], Trans [25], SpanOM [3], PtrTrans 

[9], and BiLSTM-CRF2  [24] methods. 

In the given-expression setting (i.e., ORL problem), we also 

compare our results to: EnhanceORL [8], SynAwareORL 

[2], and ORL [1] methods. “BERT” means integrating 

BERT representations into the model. Also, some methods 

utilized external knowledge as: i) “SynCons” means 

syntactic constituent features. ii) “Syn” means syntax-

enhanced version. iii) “SynDep” means dependency syntax 

knowledge. iv) “SRL” means Semantic Role Labeling that 

involves semantic knowledge. 

The best results are in bold. The best results without 

involving any external knowledge are underlined. 
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4-1- Results in the end-to-end Setting 

The results from Table 3 show a substantial improvement 

when we apply MTL on the expression prediction task. To 

follow, F1 score of “Standalone” from 61.4% boosts up to 

62.8% when we use MTL method. Also, we observe a 3.6% 

increase when we adopt APC and MTL jointly. 

Furthermore, leveraging integration method improves the 

result by 0.5 percent and set the new SOTA for expression 

prediction task. The APC method also demonstrates a 

notable improvement itself. This is evident when comparing 

the F1 scores of the “Standalone + Prompt” to the 

“Standalone”, which shows a notable increase of 2.8%. This 

observation emphasizes the effectiveness of our proposed 

APC method. 

Another point of achievement in our methods, is the 

convergence of Precision and Recall. These two measures 

are both going up and shows a successful balance between 

them, which helps to gain the SOTA performance on F1 

score. Although the highest Precision was achieved by 

“SpanOM + Prompt” model, but the low value of Recall 

lowers their F1 score. 

 

 

 

 

Table 3: Results and comparison of the expression prediction on the exact 
match metric in the end-to-end setting. “-” means results are not reported 

in their paper. 

Models 
Exact Match 

P R F1 

Trans 60.2 48.5 53.0 

SpanOM 64.9 52.6 58.1 

SpanOM + BERT 67.2 60.6 63.7 

PtrTrans - - 58.1 

PtrTrans + Syn -  - 59.9 

PtrTrans + BERT - - 63.9 

PtrTrans + BERT + Syn - - 65.3 

GenOM 

Standalone 62.0 61.0 61.4 

Standalone + Prompt 64.6 63.9 64.2 

MTL 63.2 62.5 62.8 

Prompt + MTL 64.5 65.5 65.0 

Prompt + MTL + Int 65.1 65.9 65.5 

On the other hand, in opinion roles prediction (Table 4), in 

overall value of all metrics (i.e., exact and auxiliary), we 

outperform other systems and set a new SOTA 

performance. In all auxiliary metrics (i.e. proportional and 

binary) our results are superior compare to other related 

research. In Exact matching, agent performance is 

remarkably better than the history of results, however we 

could achieve second best and best without using external 

knowledge for target role. 

Generally, we observe a considerable improvement in all 

conditions when we adopt each of our novel ideas. This 

magnifies our enunciation about using raw text-to-text 

transformer in the correct way. 

 

 

Table 4: Experimental results of our GenOM system and comparison with previous research works on the MPQA 2.0 benchmark dataset in the end-to-end 

setting. “-” means results are not available and/or not presented in their paper. 

Model 
Exact F1 Binary F1 Proportional F1 

Overall Agent Target Overall Agent Target Overall Agent Target 

BiLSTM-CRF1 - - - - 58.2 55.0 - - - 

Trans - 47.0 31.5 - 60.9 56.4 - - - 

SpanOM 43.1 52.9 32.4 51.0 56.5 45.1 48.9 55.6 41.7 

PtrTrans 43.7 53.2 33.2 - 57.9 47.0 - 56.9 42.8 

PtrTrans + Syn 44.4 54.7 35.0 - 58.3 47.7 - 57.1 43.6 

BiLSTM-CRF2 + BERT - - - - 55.5 50.4 - 46.6 34.3 

SpanOM + BERT 49.9 58.2 41.1 57.8 62.0 53.3 55.7 61.2 49.9 

SpanOM + BERT + SynCons 50.5 58.5 41.8 - - - - - - 

PtrTrans + BERT 50.1 58.3 42.0 - 62.3 53.7 - 61.7 50.4 

PtrTrans + BERT + Syn 51.6 59.5 44.0 - 63.2 55.2 - 62.3 52.0 

GenOM 

MTL 46.4 56.2 36.8 56.6 60.4 52.8 53.4 59.5 47.4 

Prompt + MTL 48.9 58.3 39.8 60.0 63.1 57.0 56.8 61.8 51.9 

Prompt + MTL + Int 51.8 61.1 42.6 62.5 65.3 59.7 59.4 64.3 54.6 
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4-2- Results in the given-expression setting 

As shown in Table 5, our system achieves SOTA results for 

all opinion roles (overall, agent and target) using all metrics. 

By adopting MTL, we obtain new SOTA results for agent 

and overall using the exact match metric, but we are not 

better in target. After applying APC, we observe a 

substantial boost in F1 score, so that on exact match, we 

establish a new SOTA for overall, agent and target. 

4-3- Discussion and Error Analysis 

By running an error analysis on the predicted items in 
development set, which is depicted in Table 6, we 
understand that a considerable portion of wrong 
matches are due to the mismatch of opinion 
expressions. Hence, we aim to focus more deeply on 
expression prediction task in future. Although 
Unmatch (means no overlap) items seems to be 
legitimate errors, but we observe some samples which 
the system prediction and gold-standard are actually 
pointing to one specific entity. As an illustration, 
consider the sentence No.1 from Table 7. Our system 
predicts “he” as an agent for expression “said”, but the 

gold-standard agent for this expression is “Syed 
Hamid”. Note that in this sample, system successfully 
determined the gold-expression. Obviously, “he” 
corresponds to “Syed Hamid” and they are actually 
one unique entity. Therefore, it seems leveraging 
“Anaphora resolution” techniques could be helpful 
and correct some miss-matches. As it is reported in 
Table 5, partial matches are also considerable. Our 
analyses indicate a variety of conflicts between the 
predicted and gold-standard occurs at the boundaries 
but the interesting point is that most of these 
discrepancies are about stop-words. We did an 
automatic analysis by using Levenshtein distance 
algorithm in order to align predicted and gold-
standard spans and find disparate segments between 
them. The most frequent words causing discrepancies 
in target are to, the, a, and, of, in, on, is, be, and in 
agent are the, of, and, an, at, a. In the expression 
prediction task, the rate of partial errors is higher, and 
the discrepancies are also the same. The most common 
words that cause conflict in expression prediction task 
are to, of, the, is, are, by, a, in. 

Table 5: Experimental results of our GenOM system and comparison with previous research works on the MPQA2.0 benchmark datase t in the given-
expression setting. “-” means results are not available and/or not presented in their paper 

Model 
Exact F1 Binary F1 Proportional F1 

Overall Agent Target Overall Agent Target Overall Agent Target 

EnhanceORL 58.3 73.1 42.7 75.2 81.6 68.3 70.6 79.4 61.2 

SynAwareORL 58.8 73.1 44.2 75.4 81.2 69.5 71.0 79.3 62.5 

SpanOM 59.6 72.4 45.8 71.6 78.1 64.5 68.1 76.7 58.7 

ORL + SRL 61.5 75.6 46.4 - - - - - - 

EnhanceORL + SRL 63.7 77.0 51.0 - - - - - - 

SynAwareORL + BERT 64.7 76.7 52.6 80.6 85.5 75.7 76.5 83.6 69.3 

SynAwareORL + BERT + SynDep 68.1 79.5 56.6 - - - - - - 

SpanOM + BERT 66.0 76.5 55.0 77.9 82.7 72.9 74.6 81.5 67.4 

SpanOM + BERT + SynCons 68.0 78.3 57.0 - - - - - - 

GenOM 

MTL 68.2 79.3 56.7 84.1 87.5 80.6 79.4 85.5 73.0 

Prompt + MTL 68.7 79.9 57.1 84.3 87.8 80.7 79.5 85.7 73.2 

  

Table 6: Percentage of different types of errors among all predicted items 
of development set in each task. EM stands for Expression Miss -match, 

PM stands for Partial Match and U means Unmatch or legitimate errors 

Task EM PM U 

Agent 55.7 15.5 28.8 

Target 39.3 30.4 30.3 

Expression - 57.7 42.3 

As reported in other studies like Xia et al. [3], we also 

observed some peculiarities and errors in annotations of 

MPQA, which might provide false information to our 

system. For instance, sentence No.2 from Table 7, there is 

an expression marked in corpus as “The”, but we think 

“The” is not a reasonable expression. On the other hand, in 

some sentences, there are predictions by our system which  

seems to be correct but they are absent in annotated data. 

For instance, consider sentence No.3 from Table 7. The 

system predicted the agent of “oppose” expression  as 

“many poor” which is correct. But there is not any agent 

marked for this expression in the corpus. To mitigate these 

gold errors in the future, it is crucial to enhance the quality 
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of MPQA annotation. This improvement will pave the way 

for more accurate and reliable results. 

We also did some preliminary experiments with a variant of 

T5, called FLAN-T5 [19], but the results did not indicate 

superiority. 

Our proposed generative approach utilizing the T5 

transformer in conjunction with MTL and APC shows 

notable performance enhancements on the MPQA 2.0 

dataset. However, several limitations must be addressed for 

application in real-world scenarios. First, the model's 

dependence on specific characteristics of the dataset may 

restrict its adaptability to other domains where opinion 

structures vary significantly or where annotated data is 

limited. Additionally, the complexity and computational 
requirements of the generative model could present 

challenges for deployment in resource-limited  

environments or in applications that necessitate real-time 

processing. Moreover, while APC effectively optimizes 

prompts for this dataset, its performance in entirely  

different contexts or languages may differ, requiring further 

tuning or adaptation. 

Table 7: Some sentences of MPQA 2.0 corpus. 

No. Sentence 

1 

Syed Hamid said the international community must 
deal with terrorism rationally and form a new "security 
architecture" to combat what he described as a "new 
dimension of crime against humanity" in the long term.  

2 
The CIA was given the task to topple governments and 
install rulers of its own choice. 

3 However, 78 percent of those polled believe there are 
many poor who oppose him. 

5- Conclusion and Future Work 

This research introduces a novel generative framework for 

opinion mining, leveraging the T5 transformer model 

through Multi-Task Learning (MTL) and Automatic 

Prompt Construction (APC). Our approach achieves 

remarkable performance improvements on the MPQA 2.0 

dataset, setting new state-of-the-art records without relying 

on external knowledge. The MTL strategy enables the 

model to learn interconnected sub-tasks concurrently, 

enhancing the detection of opinion expressions and their 

associated roles. Meanwhile, APC facilitates the automatic 

optimization of prompts, effectively addressing the 

challenges posed by manual prompt engineering and 

ensuring more efficient task customization. The results 

indicate that the synergy between MTL and APC 

significantly elevates precision, recall, and F1 scores across 

various evaluation metrics. By integrating predictions from 

both the end-to-end and given-expression settings, our 

method achieves a more accurate recognition of opinion 

structures. These findings highlight the effectiveness of 

generative models in capturing complex opinion 

relationships within text. 

Looking ahead, future research can build on these findings 

by integrating additional syntactic and semantic knowledge 

into generative models and further refining the APC 

technique. Extending the application of our methods to 

other datasets and domains is also critical. Investigating the 

use of more advanced generative transformers or combining 

our approach with alternative machine learning strategies 

could yield additional improvements. Furthermore, 

enhancing the quality of existing datasets and developing 

new benchmarks will be essential for validating the 

generalizability and effectiveness of these methods across a 

broader range of contexts. 
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