سيستم توصيه گر زمينه آگاه سفر با بهرهگيری از اطلاعات عکسهای برچسبدار جغرافيايی
الموضوعات :رضوان محمدرضایی لرکی 1 , رضا روانمهر 2 , میلاد امرالهی 3
1 - گروه مهندسي كامپيوتر، واحد تهران مركزي، دانشگاه آزاد اسلامي، تهران
2 - گروه مهندسي كامپيوتر، واحد تهران مركزي، دانشگاه آزاد اسلامي، تهران
3 - گروه مهندسي كامپيوتر، واحد تهران مركزي، دانشگاه آزاد اسلامي، تهران
الکلمات المفتاحية: سيستم توصيهگر زمینه آگاه, سیستم توصیهگر سفر, زمينه, الگوریتم رقابت استعماری, خوشه¬بندی C-Means فازی,
ملخص المقالة :
سيستمهاي توصیهگر بر اساس اطلاعات کاربران و آیتمها، سلایق و علاقهمندیهای مورد نظر کاربران را پیشبینی کرده و بر اساس آنها آیتمهای مناسب را به کاربران پیشنهاد میدهند. اکثر رويکردهاي موجود براي سيستمهاي توصيهگر بر روی پیشنهاد دادن مرتبطترین آیتمها تمرکز میکنند و اطلاعات زمينهاي مانند زمان یا مکان را در نظر نمیگیرند. در اين مقاله يک روش برای سیستم توصيهگر زمينه آگاه سفر با بهرهگيري از اطلاعات عکسهاي برچسب دار جغرافيايي ارایه شده است که از دقت بالايي برخوردار است. این روش نسبت به مقالات مشابه، تعداد زمينههاي بيشتری مانند (وضعيت آب و هوا، وضعيت روحي کاربر، ميزان ترافيک و ...) را در نظر میگیرد. با این کار باعث نزديک شدن کاربران يک خوشه و در نتیجه افزايش دقت میشود. روش پیشنهادی به جای استفاده از الگوریتم خوشهبندي کلاسيک از ادغام دو الگوريتم رقابت استعماري و خوشهبندي C-Means فازی استفاده میکند. ارزيابي روش ارايه شده بر روی مجموعه داده فليکر انجام شده و نتايج ارزيابي حاکي از آن است که روش پيشنهادي قادر به فراهم کردن توصيههاي موثر و دقیق مطابق با علاقهمندیهای کاربر و موقعيت فعلي بازديد او ميباشد. رویکرد پيشنهادي در معیارهای دقت، متوسط مطلق دقت و میانگین قدر مطلق خطا به ترتیب به 0.69 و 0.53 و 0.31 دست یافته است.
1.J. Bobadilla, F. Ortega, A. Hernando and A. Gutiérrez, “Recommender systems survey,” Know.-Based Syst., vol. 46, pp.109-132, 2013.
2. بهشتی نژاد، راحله. سمیع، محمد ابراهیم. حمزه، علی. (1398). «بهبود سیستم های توصیه گر با کمک وب معنایی»، نشریه فناوری اطلاعات و ارتباطات ایران ۹، شماره ۳۱ (۱۳۹۸): ۴۵-۵۶.
3. M. Slehat,“Evaluation of potential tourism resources for developing different forms of tourism : case study of Iraq Al-Amir and its surrounding areas – Jordan,” PhD thesis, Catholic University of Eichstätt-Ingolstadt.2018.
4. منتظر، غلامعلی. فتحی، وحید. (1394). «تخصیص بهینه درس پار به کمک الگوریتم بهینه سازی گروه ذرات»، نشریه فناوری اطلاعات و ارتباطات ایران ۶، شماره ۲۱ (۱۳۹۴): ۱۵-۲۶.
5. N. Henze, P. Dolog and N. Wolfgang, “Reasoning and Ontologies for Personalized Elearning in the Semantic Web,” Educational Technology & Society, Vol. 7, 82–97.
6. صابری، نفیسه. منتظر، غلامعلی. (1389). «شخصي سازي محيط يادگيري الكترونيكي به كمك توصيه گر فازي مبتني برتلفيق سبك يادگيري و سبك شناختي» نشریه فناوری اطلاعات و ارتباطات ایران 2، شماره 3 (1389): 91-109.
7. K. Choi, D. Yoo, G. Kim and Y. Suh, “A hybrid online-product recommendation system: Combining implicit Rating based collaborative filtering and sequential pattern analysis,” Electronic Commerce Research and Applications, Vol.11, pp. 309-317, 2012.
8. G. Adomavicius and A. Tuzhilin, “Context-Aware Recommender Systems,” In: Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, Ed. Springer, Boston, MA, Springer US, pp. 217-253. 2011.
9. K. Verbert, N. Manouselis, X. Ochoa, M. Wolpers, H. Drachsler, I. Bosnic and E. Duval, “Context-aware recommender systems for learning: a survey and future challenges,” IEEE Transactions on Learning Technologies, Vol. 5, no. 4, pp. 318-335, 2012.
10. F. Ricci, “Mobile recommender systems,” Information Technology & Tourism journal, vol. 12, no. 3, pp.205-231., 2010.
11. R. Beale and P. Lonsdale, “Mobile context aware systems: The intelligence to support tasks and effectively utilise resources,” In: Mobile Human-Computer Interaction-Mobile HCI 2004. S. Brewster, M. Dunlop, Ed. Springer Berlin Heidelberg. pp. 240-251. 2004.
12. D. Weib, M. Duchon, F. Fuchs and C. Linnhoff-Popien, “Context-aware personalization for mobile multimedia services,” Proceedings of the 6th International Conference on Advances in Mobile Computing and Multimedia. ACM, 2008.
13. N. Manouselis, H. Drachsler, R. Vuorikari, H. Hummel and R. Koper, “Recommender systems in technology enhanced learning,” Recommender systems handbook. Springer US. pp. 387-415. 2011.
14. A. K. Dey, A. Gregory and D. Salber, “A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications,” International Journal of Human-Computer Studies, Vol. 16, no. 2, pp. 97-166. 2001.
15. P. Brusilovsky and E. Millán, “User models for adaptive hypermedia and adaptive educational systems,” The adaptive web. Springer-Verlag, 2007.
16. K. Xu, Clustering. In: Dubitzky W., Wolkenhauer O., Cho KH., Yokota H. (eds) Encyclopedia of Systems Biology. 2013, Springer, New York, NY.
17. S. Chen, Z. Xu and Y. Tang, “A Hybrid Clustering Algorithm Based on Fuzzy c-Means and Improved Particle Swarm Optimization,” Arabian Journal for Science and Engineering, Vol. 39, pp.8875–8887, 2014.
18. KP. Soman, S. Diwakar and V. Ajay, “Data mining: theory and practice,” PHI Learning Pvt. Ltd.; 2006.
19. J. Nayak, B. Naik and HS. Behera, “Fuzzy C-means (FCM) clustering algorithm: a decade review from 2000 to 2014,” In Computational intelligence in data mining-Vol. 2, pp. 133-149. 2015, Springer, New Delhi.
20. A. Stetco, X. Zeng and J. Keane, “Fuzzy C-means++: Fuzzy C-means with effective seeding initialization,” Expert Systems with Applications, Vol. 42, no. 21, pp. 7541–7548, 2015.
21. A. Gargari and E. Lucas, “Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition,” IEEE Congress on Evolutionary Computation, pp. 4661-4667, 2007.
22. N.M. Villegas, C. Sanchez, J. Dõaz-Cely and G. Tamura, “Characterizing Context -Aware Recommender Systems: A Systematic Literature Review,” Knowledge-Based Systems. Vol. 140, pp. 173-200, 2017.
23. G. Chen and L. Chen, “Augmenting service recommender systems by incorporating contextual opinions from user reviews,” User Modeling and User-Adapted Interaction, Vol. 25, no. 3, pp. 295–329, 2015.
24. Z. Xu, C. Ling and C. Gencai, “Topic based context-aware travel recommendation method exploiting geotagged photos,” Neurocomputing, Vol. 155, pp. 99-107, 2015.
25. Shafaqat, W. and Byun, Y.C., 2020. A Recommendation Mechanism For Under-Emphasized Tourist Spots Using Topic Modeling And Sentiment Analysis. Sustainability, 12(1), p.320.
26. Alrasheed, H., Alzeer, A., Alhowimel, A. and Althyabi, A., 2020. A Multi-Level Tourism Destination Recommender System. Procedia Computer Science, 170, pp.333-340.
27. H. Khallouki, A. Abatal and M. Bahaj, “An ontology-based context awareness for smart tourism recommendation system,” In: Proceedings of the Inter-national Conference on Learning and Optimization Algorithms: Theory and Applications, LOPAL 2018, Rabat, Morocco, May 2-5, 2018, pp43:1–43:5.
28. E. Pantano, C-V. Priporas, N. Stylos and C. Dennis, “Facilitating tourists' decision making through open data analyses: A novel recommender system,” Tourism Management Perspectives, Vol. 31. pp. 323-331, 2019.
29. B. Kaya, “A hotel recommendation system based on customer location: a link prediction approach,” Multimedia Tools and Applications, Vol. 79, pp. 1745–1758, 2020.
30. L. Esmaeili , S. Mardani , A. Hashemi Golpayegani and Z. Zanganeh Madar. “A Novel Tourism Recommender System in the Context of Social Commerce,” Expert Systems With Applications, Vol.149, 113301, July 2020.
31. BM. Veloso, F. Leal, B. Malheiro and JC. Burguillo, “On-line guest profiling and hotel recommendation,” Electronic Commerce Research and Applications, Vol. 34, 100832, 2019.
32. Z. Xu, L. Chen, H. Guo, M. Lv and G. Chen, “User similarity-based gender-aware travel location recommendation by mining geotagged photos,” International Journal of Embedded Systems, Vol. 10, no. 5, 356, 2018.
33. A. Majid, L. Chen, G. Chen, H. Mirza, I. Hussain and J. Woodwaard, “A context-aware personalized travel recommendation system based on Geotagged social media data mining,” International Journal of Geographical Information Science, Vol. 27, no. 4, pp. 662-684, 2013.
34. I. Memon, L. Chen, A. Majid, M. Lv, I. Hussain and G. Chen, “Travel recommendation using geo-tagged photos in social media for tourist,” Wireless Personal Communications. vol. 80, no. 4, pp. 1347-1362, 2015.
35. Z. Xu, L. Chen, Y. Dai and G. Chen. “A Dynamic Topic Model and Matrix Factorization based Travel Recommendation Method Exploiting Ubiquitous Data,” IEEE Transactions on Multimedia. Vol. 19, no. 8, pp. 1933-1945, 2017.
36. S. Ojagh, M. Malek, S. Saeedi, and S. Liag, “A location-based orientation-aware recommender system using IoT smart devices and Social Networks,” Future Generation Computer Systems, Vol. 108, pp. 97-118, 2020.
37. G. Zhao, P. Lou, X. Qian and X. Hou, “Personalized location recommendation by fusing sentimental and spatial context,” Knowledge-Based Systems, Vol. 196, 2020. 38. M. Memarzadeh and A. Kamandi, “Model-Based Location Recommender System Using Geotagged Photos On Instagram,” 2020 6th International Conference on Web Research (ICWR), Tehran, Iran, 2020, pp. 203-208.
39. L.W. Dietz, A. Sen, R. Roy and W. Worndl, “Mining trips from location-based social networks for clustering travelers and destinations,” Information Technology & Tourism, Vol. 22, pp. 131–166, 2020.
40. D. Lyu, L. Chen, Z. Xu and S. Yu, “Weighted multi-information constrained matrix factorization for personalized travel location recommendation based on geo-tagged photos,” Applied Intelligence, Vol. 50, pp. 924–938, 2020.
41. A. Chaghari and M. Feizi-Derakhshi, “Automatic Clustering Using Improved Imperialist Competitive Algorithm,” JSDP. 2017; 14 (2) :159-169.
42. امیری، مریم. ختن لو، حسن. (1392).« خوشه بندی اسناد، مبتنی برآنتولوژی و رویکرد فازی» نشریه فناوری اطلاعات و ارتباطات ایران 5، شماره 17 (1392): 73-96.
43. D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE Transactions on Pattern Analysis and Machine Intelligence., Vol. 1, no. 2, pp. 224–227, 1979
44. H. Chou, M. C. Su, and E. Lai, “A new cluster validity measure and its application to image compression,” Pattern Analysis and Applicationsvol. 7, no. 2, pp. 205–220, Jul. 2004.
45. “Flickr 10K Dataset” https:// www.kaggle.com, [accessed: Sep 2020] 46. Del Olmo, F.H. and Gaudioso, E., 2008. Evaluation of recommender systems: A new approach. Expert Systems with Applications, 35(3), pp.790-804.
47. E. Rendón, I. M. Abundez, C. Gutierrez, S. D. Zagal, A. Arizmendi, E. M. Quiroz and H. E. Arzate, “ A comparison of internal and external cluster validation indexes,” In Proceedings of the 2011 American conference on applied mathematics and the 5th WSEAS international conference on Computer engineering and applications (AMERICAN-MATH’11/CEA’11). World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, 158–163, 2011.
48. A. Majid, L. Chen, G. Chen, H. T. Mirza and I. Hussain, “GoThere: Travel suggestions using geotagged photos,” In WWW 2012 companion, April 16–20, 2012. Lyon, France: ACM.
49. Y. Zheng, L. Zhang, X. Xie and W.Y. Ma, “Mining interesting locations and travel sequences from GPS trajectories,” in: Proceedings of the 18th International Conference on World Wide Web, WWW '09, ACM, New York, NY, USA, 2009, pp. 791–800.
50. Z. Yin, L. Cao, J. Han, J. Luo and T.S. Huang, “Diversified trajectory pattern ranking in geo-tagged social media,” in: Proceedings of SIAM International Conference on Data Mining, 2011, pp. 980–991.