کاهش ریپل گشتاور در محرکه ماژولار موتور سنکرون آهنربای دائم ششفاز نامتقارن غیرسینوسی با سیمپیچی دوبخشی استاتور
الموضوعات :
داود ملکی
1
,
ابوالفضل حلوایی نیاسر
2
1 - گروه مهندسی قدرت، دانشكده مهندسي برق و كامپيوتر، دانشگاه کاشان، کاشان، ایران.
2 - گروه مهندسی قدرت، دانشكده مهندسي برق و كامپيوتر، دانشگاه کاشان، کاشان، ایران،
الکلمات المفتاحية: محرکه, موتور PMSM ششفاز نامتقارن, اینورتر پل H, کنترلکننده شبه تناسبی- رزونانسی, ریپل گشتاور.,
ملخص المقالة :
استفاده از موتورهای سنکرون آهنربای دائم (PMSM) چندفاز، به دلیل مزایایی همچون چگالی توان زیاد و بهره بالا در کاربردهای مختلف که دستیابی به قابلیت اطمینان حداکثر، از اهداف اساسی طراحی است بسیار مورد توجه است. در این مقاله به کنترل یک موتور PMSM ششفاز نامتقارن پرداخته میشود که در آن برای دستیابی به قابلیت اطمینانبیشتر در محرکه، هر فاز استاتور شامل دو تکه سیمپیچ جدای از هم است که به صورت فیزیکی در یک راستا و بهصورت قرینه نسبت به نقطه مرکز استاتور قرار دارند. بخش کنترل و قدرت هر فاز، کاملاًً ماژولار بوده و مستقل از بخش کنترل و قدرت فازهای دیگر است و هر کدام از دو سیمپیچ یکفاز از یک اینورتر تکفاز پل H مستقل تغذیه میگردد. با توجه به ولتاژ ضدمحرکه غیرسینوسی فازها و جهت کاهش گشتاور ایجادشده، از یک روش تزریق جریان هارمونیکی بهینه همراه با کنترلکنندههای جریان شبهتناسبی– رزونانسی بهره گرفته میشود. همچنین در حالت وقوع خطا و از دست رفتن دو سیمپیچ، از یک الگوریتم کنترل تحملپذیر خطا برمبنای حذف هارمونیک دوم گشتاور الکترومغناطیسی بهره گرفته میشود. قابلیت روشهای کنترلی ارائهشده، با استفاده از شبیهسازی در نرمافزار سیمولینک صحهگذاری میگردد.
[1] M. Furmanik, L. Gorel, D. Konvi, and P. Rafajdus, "Comparative study and overview of field-oriented control techniques for six-phase PMSMs," Applied. Science, vol. 11, no. 17, Article ID: 7841, 2021.
[2] K. S. Khan, W. M. Arshad, and S. Kanerva, "On performance figures of multiphase machines," in Proc. IEEE 18th Int. Conf. on Electrical Machines, 5 pp., Vilamoura, Portugal, 6-9 Sept. 2008.
[3] J. R. Fu and T. A. Lipo, "Disturbance-free operation of a multiphase current-regulated motor drive with an opened phase," IEEE Trans. on Ind. Appl., vol. 30, no. 5, pp. 1267-1274, Sept./Oct. 1994.
[4] S. Kuznetsov, "Machine design and configuration of a 7000 hp hybrid electric drive for naval ship propulsion," in Proc. IEEE Int. Electric Machines & Drives Conf., pp. 1625-1628, Niagara Falls, Canada, 15-18 May 2011.
[5] J. F. Hansen and F. Wendt, "History and state of the art in commercial electric ship propulsion, integrated power systems, and future trends," Proceedings of IEEE, vol. 103, no. 12, pp. 2229-2242, Dec. 2015.
[6] J. S. Thongam, M. Tarbouchi, A. F. Okou, D. Bouchard, and R. Beguenane, "Trends in naval ship propulsion drive motor technology," in Proc. IEEE Electrical Power & Energy Conf., 5 pp., Halifax, Canada, 21-23 Aug. 2013.
[7] D. H. Eldeeb, Modelling, Control and Post-Fault Operation of Dual Three-phase Drives for Airborne Wind Energy, Ph.D. Thesis, Munich School of Engineering, Germany, 2018.
[8] F. Barrero and M.J. Duran, "Recent advances in the design, modeling, and control of multiphase machines - part I," IEEE Trans. on Industrial Electronics, vol. 63, no. 1, pp. 449-458, Jan. 2016.
[9] S. Kallio, M. Andriollo, A. Tortella, and J. Karttunen, "Decoupled d-q Model of Double-Star Interior-Permanent-Magnet Synchronous Machines," IEEE Trans. on Industrial Electronics, vol. 60, no. 6, pp. 2486-2494, Jun. 2013.
[10] Y. Hu, Z.Q. Zhu, and M. Odavic, "Comparison of two-individual current control and vector space decomposition control for dual three-phase PMSM," IEEE Trans. on Industry Application, vol. 53, no. 5, pp. 4483-4492, Sept./Oct. 2017.
[11] A. H. Almarhoon, Sensorless Control of Dual Three-phase Permanent Magnet Synchronous Machine Drives, Ph.D. Thesis, The University of Sheffield, 2016.
[12] L. R. Rocha, et al., "Evaluation methodology of current control techniques for torque ripple reduction in non-sinusoidal PMSM," in Proc. IEEE 8th Southern Power Electronics Conf. and 17th Brazilian Power Electronics Conf., 7 pp., Florianopolis, Brazil, 26-29 Nov. 2023.
[13] M. J. Nam, J. H. Kim, K. Y. Cho, H. W. Kim, and Y. Cho, "Torque ripple reduction of an interior PM synchronous motor by compensating harmonic currents based on flux linkage harmonics," Journal of Power Electronics, vol. 17, no. 5, pp. 1223-1230, Sept. 2017.
[14] S. Mu, J. Kang, Z. Zhong, and Z. Ma, "Improved detecting method for multiple rotating reference frames based harmonic control of PMSMs," in Proc. Chinese Automation Congress, pp. 5458-5463, Shanghai, China, 6-8 Nov. 2020.
[15] J. Taylor, D. F. Valencia Garcia, W. Taha, and M. Mohamadian, Dynamic Modelling of Multiphase Machines Based on the VSD Transformation, SAE Technical Paper 2021-01-0774, doi:10.4271/2021-01-0774, 2021.
[16] Z. Zhu, et al., "Advances in dual-three-phase permanent magnet synchronous machines and control techniques," Energies, vol. 14, no. 22, Article ID: 7508, Nov.-2 2021.
[17] M. Furmanik, L. Gorel, D. Konvi, P. Rafajdus, "Comparative Study and Overview of Field-Oriented Control Techniques for Six-Phase PMSMs," Applied. Science, vol. 11, no. 17, Article ID: 7841, Sept.-1 2021.
[18] Y. Ren and Z. Q. Zhu, "Enhancement of steady-state performance in direct torque controlled dual-three phase permanent magnet synchronous machine drives with modified switching table," IEEE Trans. Ind. Electron. vol. 62, no. 6, pp. 3338-3350, Jun. 2015.
[19] Y. Ren, et al., "Improved duty-ratio-based direct torque control for dual three-'phase permanent magnet synchronous machine drives," IEEE Trans. Ind. Appl., vol. 55, pp. 5843-5853. Nov./Dec. 2019.
[20] T. Luan, Z. Wang, Y. Long, Z. Zhang, and Q. Li, "Multi-virtual-vector model predictive current control for dual three-phase PMSM," Journals Energies, vol. 14, no. 21, Article ID: 7292, Nov.-1 2021.
[21] S. W. Hwang, et al., "Design and analysis of dual stator PMSM with separately controlled dual three-phase winding for eVTOL propulsion," IEEE Trans. on Transportation Electrification, vol. 8, no. 4, pp. 4255-4264, Dec. 2022.
[22] A. Halvaei Niasar, M. Ahmadi, and S. H. Edjtahed, "Sensorless control of non-sinusoidal permanent magnet brushless motor using selective torque harmonic elimination control method based on full-order sliding mode observer," Advances in Power Electronics Journal, vol. 2016, no. 1, Article ID: 9358604, 13 pp., 2016.
[23] H. Ghanayem, M. Alathamneh, R.M. Nelms, "A Comparative Study of PMSM Torque Control using Proportional-Integral and Proportional-Resonant Controllers," in Proc. IEEE SoutheastCon, pp. 453-458, Mobile, AL, USA, 26 Mar.- 3 Apr. 2022.
[24] L. F. A. Pereira and A. S. Bazanella, "Tuning rules for proportional resonant controllers," IEEE Trans. on Control Systems Technology, vol. 23, no. 5, pp. 2010-2016, Sept. 2015.
[25] F. Hans, W. Schumacher, S. F. Chou, and X. Wang, "Design of multi frequency proportional–resonant current controllers for voltage-source converters," IEEE Trans. on Power Electronics, vol. 35, no. 12, pp. 13573-13589, Dec. 2020.
[26] H. Park, T. Kim, Y. Suh, "Fault-tolerant control methods for reduced torque ripple of multiphase BLDC motor drive system under open-circuit faults," IEEE Trans. on Industry Applications, vol. 58, no. 6, pp. 7275-7285, Nov./Dec. 2022.