کلیدزنی بهینه در مبدل ششفاز ماشین سنکرون آهنربای دائم بهمنظور کاهش اعوجاج هارمونیکی جریان با استفاده از روش کنترل پیشبین جریان اصلاحشده
پیمان میرزایی پور
1
(
گروه پژوهشي برق، دانشکده مهندسی، دانشگاه شهید چمران اهواز، ایران
)
سیدقدرت اله سیف السادات
2
(
گروه پژوهشی برق، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران
)
محسن صنیعی
3
(
گروه پژوهشي برق، دانشکده مهندسی، دانشگاه شهید چمران اهواز، ایران
)
سید سعیدالله مرتضوی
4
(
گروه پژوهشی برق، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران
)
الکلمات المفتاحية: ماشینهای سنکرون مغناطیس دائم (PMSM) ششفاز, کنترل پیشبین جریان (PCC) اصلاحشده, بردارهای ولتاژ مجازی, کلیدزنی بهینه, مینیممسازی تابع هزینه.,
ملخص المقالة :
این مقاله یک روش کنترل پیشبین جریان (PCC) اصلاحشده مبتنی بر بردارهای ولتاژ مجازی (VV-PCC) بهینه با کنترل و تنظیم همزمان دو زیرفضا در مبدل ششفاز را برای ماشینهای سنکرون مغناطیس دائم (PMSM) پیشنهاد میکند. این روش منجر به به حداقلنمودن اعوجاج هارمونیکی جریان در مقایسه با دیگر روشها میشود. علاوه بر این، امکان کنترل عملکرد PMSM ششفاز با یک جریان نامتعادل بین دو مجموعه از سیمپیچها نیز فراهم میشود. نهایتاً روش PCC با زیرفضای دوگانه (BS-PCC) مبتنی بر بردارهای مجازی با دامنه بهینه اتخاذ میشود که با انتخاب الگوی كلیدزنی مناسب میتواند هم میزان هارمونیکهای ناخواسته را کاهش دهد و هم پاسخ دینامیکی سریع و پاسخ گشتاوری قابل قبولی را ارائه نماید. همچنین از آنجا که انتخاب حالتها در PCC میتواند منجر به جریانهای چرخشی هارمونیکی در سیمپیچهای ماشین شود، این مشکل را میتوان با روش پیشنهادی با حداقلسازی ضریب وزنی رفع کرد که به تعداد تکرارهای کمی در کلیدزنی مبدل ششفاز نیاز دارد. اعتبارسنجی مقاله با استفاده از نرمافزار Matlab بر روی یک ماشین نمونه انجام شده است.
[1] Y. Luo and C. Liu, "Elimination of harmonic currents using a reference voltage vector based-model predictive control for a six-phase PMSM motor," IEEE Trans. on Power Electronics, vol. 34, no. 7, pp. 6960-6972, Jul. 2019.
[2] P. F. C. Gonçalves, S. M. A. Cruz, and A. M. S. Mendes, "Disturbance observer based predictive current control of six-phase permanent magnet synchronous machines for the mitigation of steady-state errors and current harmonics," IEEE Trans. on Industrial Electronics, vol. 69, no. 1, pp. 130-140, Jan. 2022.
[3] P. Gonçalves, S. Cruz, and A. Mendes, "Fault-tolerant predictive current control of six-phase PMSMs with a single isolated neutral configuration," Machines, vol. 10, no. 12, Article ID: 1152, 2022.
[4] J. Zhang and F. Yu, "A novel model predictive current control for asymmetrical six-phase PMSM drives with an optimum duty-cycle calculation scheme," IEEE Access, vol. 11, pp. 8096-8107, 2023.
[5] S. He, Y. Li, Z. Shuai, Y. Zhang, J. Gai, and G. Zhou, "Virtual-vector-based FCS model predictive current control with duty cycle optimization for dual three-phase motors," Journal of Physics: Conference Series, vol. 1754, Article ID: 012083, 2021.
[6] B. Lei, L. Wu, Z. Lin, and P. Mei, "Harmonic current suppression of dual three-phase PMSM based on model predictive direct torque control," Mathematical Problems in Engineering, vol. 2021, no. 1, Article ID: 3043673, 2021.
[7] Y. Luo and C. Liu, "Multi-vector-based model predictive torque control for a six-phase PMSM motor with fixed switching frequency," IEEE Trans. on Energy Conversion, vol. 34, no. 3, pp. 1369-1379, Sept. 2019.
[8] P. Gonçalves, S. Cruz, and A. Mendes, "Finite control set model predictive control of six-phase asymmetrical machines an overview," Energies, vol. 12, no. 4, pp. 4693-4703, Aug. 2019.
[9] H. Wang, J. Hu, Y. Li, and Z. Wang, "Dynamic modeling for interturn short circuit faults in symmetrical six-phase FSCW-PMSMs with unaligned fault coil," IEEE Trans. on Power Electronics, vol. 39, no. 2, pp. 2721-2730, Feb. 2024.
[10] P. P. Das, S. Satpathy, and S. Bhattacharya, "A voltage injection-based current harmonics suppression strategy for six-phase PMSM with nonsinusoidal back EMF," IEEE J. of Emerging and Selected Topics in Industrial Electronics, vol. 5, no. 1, pp. 285-297, Jan. 2024.
[11] O. Gonzalez, et al., "Model predictive current control of six-phase induction motor drives using virtual vectors and space vector modulation," IEEE Trans. on Power Electronics, vol. 37, no. 7, pp. 7617-7628, Mar. 2022.
[12] H. W. Kim, M. J. Youn, K. Y. Cho, and H. S. Kim, "Nonlinearity estimation and compensation of PWM VSI for PMSM under resistance and flux linkage uncertainty," IEEE Trans. on Control Systems Technology, vol. 14, no. 4, pp. 589-601, Jul. 2006.
[13] K. Zhang, M. Fan, Y. Yang, R. Chen, Z. Zhu, C. Garcia, and J. Rodriguez, "Tolerant sequential model predictive direct torque control of permanent magnet synchronous machine drives," IEEE Trans. on Transportation Electrification, vol. 6, no. 3, pp. 1167-1176, Sept. 2020.
[14] Y. Luo and C. Liu, "A flux constrained predictive control for a six-phase PMSM motor with lower complexity," IEEE Trans. on Industrial Electronics, vol. 66, no. 7, pp. 5081-5093, Jul. 2019.
[15] Y. Luo and C. Liu, "Model predictive control for a six-phase PMSM motor with a reduced-dimension cost function," IEEE Trans. on Industrial Electronics, vol. 67, no. 2, pp. 969-979, Feb. 2020.
[16] Y. Wu, Z. Zhang, Q. Yang, W. Tian, P. Karamanakos, M. Lobo Heldwein, and R. Kennel, "A direct model predictive control strategy with an implicit modulator for six-phase PMSMs," IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 11, no. 2, pp. 1291-1304, Apr. 2023.
[17] J. Xu, M. Odavic, Z. Q. Zhu, Z. Y. Wu, and N. M. A. Freire, "Modulation restraint analysis of space vector PWM for dual three-phase machines under vector space decomposition," IEEE Trans. on Power Electronics, vol. 36, no. 12, pp. 14491-14507, Dec. 2021.
[18] W. Liao, M. Lyu, S. Huang, Y. Wen, M. Li, and S. Huang, "An enhanced SVPWM strategy based on vector space decomposition for dual three-phase machines fed by two DC-source VSIs," IEEE Trans. on Power Electronics, vol. 36, no. 8, pp. 9312-9321, Aug. 2021.
[19] R. T. Arumalla, S. Figarado, K. Panuganti, and N. Harischandrappa, "Selective lower order harmonic elimination in DC-AC converter using space vector approach," IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 68, no. 8, pp. 2890-2894, Aug. 2021.
[20] Z. Wang, Y. Wang, J. Chen, and Y. Hu, "Decoupled vector space decomposition based space vector modulation for dual three-phase three-level motor drives," IEEE Trans. on Power Electronics, vol. 33, no. 12, pp. 10683-10697, Dec. 2018.
[21] D. Woldegiorgis and H. A. Mantooth, "A modified neutral-point voltage control strategy for three-level inverters based on decomposition of space vector diagram," CES Trans. on Electrical Machines and Systems, vol. 6, no. 2, pp. 124-134, Jun. 2022.
[22] J. Xu, M. Odavic, Z. Q. Zhu, Z. Y. Wu, and N. Freire, "A novel space vector PWM technique with duty cycle optimization through zero vectors for dual three-phase PMSM," IEEE Trans. on Energy Conversion, vol. 37, no. 4, pp. 2271-2284, Dec. 2022.
[23] W. Li, P. Song, Q. Li, Z. Li, and N. C. Kar, "Open-phase fault modeling for dual three-phase PMSM using vector space decomposition and negative sequence components," IEEE Trans. on Magnetics, vol. 58, no. 8, pp. 1-6, Aug. 2022.
[24] D. Zhou, K. Luo, Z. Shen, and J. Zou, "Vector-space-decomposition-based power flow control of single-stage-multiport-inverter-fed PMSM drive for hybrid electric vehicles," IEEE Trans. on Industrial Electronics, vol. 71, no. 8, pp. 8514-8524, Aug. 2024.
[25] R. Fu, "A simple and robust model predictive current control of PMSM using stator current predictor and target-oriented cost function," IEEE Access, vol. 10, pp. 100024-100032, 2022.
[26] J. Gao, C. Gong, W. Li, and J. Liu, "Novel compensation strategy for calculation delay of finite control set model predictive current control in PMSM," IEEE Trans. on Industrial Electronics, vol. 67, no. 7, pp. 5816-5819, Jul. 2020.
[27] C. A. Agustin, J. T. Yu, Y. S. Cheng, C. K. Lin, and Y. W. Yi, "A synchronized current difference updating technique for model-free predictive current control of PMSM drives," IEEE Access, vol. 9, pp. 63306-63318, 2021.
[28] X. Li, W. Tian, X. Gao, Q. Yang, and R. Kennel, "A generalized observer-based robust predictive current control strategy for PMSM drive system," IEEE Trans. on Industrial Electronics, vol. 69, no. 2, pp. 1322-1332, Feb. 2022.
[29] T. Li, R. Ma, and W. Han, "Virtual-vector-based model predictive current control of five-phase PMSM with stator current and concentrated disturbance observer," IEEE Access, vol. 8, pp. 212635-212646, 2020.
[30] X. Li, Y. Wang, X. Guo, X. Cui, S. Zhang, and Y. Li, "An improved model-free current predictive control method for SPMSM drives," IEEE Access, vol. 9, pp. 134672-134681, 2021.