فرایندهای پلیمری در پرتو هوش مصنوعی
الموضوعات :
1 - گروه فرآیندهای پلیمریزاسیون، دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، صندوق پستی ۱۴3-14115
الکلمات المفتاحية: هوش مصنوعی (AI), پلیمر, اختلاط, اکسترودر, لاستیک, کامپوزیت,
ملخص المقالة :
هوش مصنوعی (Artificial Intelligence) (AI) با ورود به زمینههای مختلف، در حال متحول کردن زندگی روزمره بشر در کره خاکی است. این ابزار پنجره جدیدی را بر روی فعالان در زمینه علوم و مهندسی پلیمر مانند ساير علوم گشوده است و قادر است بهطور گسترده در ساخت پلیمرها و مشتقات آنها، فرایندهای اختلاط، شکلدهی پلیمرها، کامپوزیتها و طراحی و ساخت تجهیزات مربوط استفاده شود. الگوریتمهای هوش مصنوعی میتوانند تجزیه و تحلیل حجم وسیع و نامحدودی از دادههای اخذ شده از حسگرها و سامانههای نظارت بر فرایند را میسر سازند. این الگوها و روندها، توانایی پردازش مواردی که تشخیص دستی آنها دشوار یا ناممکن است، فراهم کردهاند و در مدلسازی و شبیهسازی، کنترل فرایند، تشخیص خطا و سامانههای توصیهکننده، کاربرد دارند و میتواند برای حصول اختلاط بهینه با عنایت به خواص اجزای مخلوط و مشخصات فنی محصول مورد نظر، توصیههایی ارائه دهد. هوش مصنوعی میتواند عوامل فرایندی را برای اطمینان از سازگاری و پراکندگی یکنواخت افزودنیها، پرکنندهها و رنگها که منجر به مخلوطی با کیفیت بالاتر و محصولات با خواص بهینه میشود، کنترل کند. همچنین میتواند به کاهش زمان چرخه، بدون به خطر انداختن کیفیت محصول کمک کند که میتواند منجر به صرفهجویی قابلتوجهی در هزینه و بهرهوری بیشتر شود و میتواند امکان تعمیر و نگهداری پیشگیرانه را فراهم کند. در این مطالعه به کاربرد هوش مصنوعی در برخی از فرایندهای پلیمری بهطور خاص در آمیزهسازی لاستیک، تهیه کامپوزیت و اکستروژن اشاره میشود که نویدبخش مسیر جدیدی در فرایندهای پلیمری است.
1. Yuan S., The Roles of Artificial Intelligence Techniques for Increasing the Prediction Performance of Important Parameters and Their Optimization in Membrane Processes: A Systematic Review, Ecotoxicol. Environ. Saf., 260, 115066-115075, 2023.
2. Butler K.T., Davies D.W., Cartwright H., Isayev O., and Walsh A., Machine Learning for Molecular and Materials Science, Nature, 559, 547–555. 2018.
3. Westermayr J., Gastegger M., Schütt K.T., and Maurer R.J., Perspective on Integrating Machine Learning into Computational Chemistry and Materials Science, J. Chem. Phys., 154, 230903-23092, 2021.
4. Trinh C., Meimaroglou D., and Hoppe S., Machine Learning in Chemical Product Engineering: The State of the Art and a Guide for Newcomers, Processes, 9, 8, 1456-1500, 2021.
5. Elton D. C., Boukouvalas Z., Fuge M.D., and Chung P. W., Deep Learning for Molecular Design—a Review of the State of the Art, Mol. Syst. Des. Eng., 4, 828–849, 2019.
6. Pilania G., Machine Learning in Materials Science: From Explainable Predictions to Autonomous Design, Comput. Mater. Sci.,193, 110360-110373, 2021.
7. Winkler D.A., Machine Learning at the (Nano)Materials-
Biology Interface, in Machine Learning in Chemistry, The Royal
Society of Chemistry, 206–226, 2020.
8. Bennett S., Tarzia A., Zwijnenburg M.A., and Jelfs K.E.,
Artificial Intelligence Applied to the Prediction of Organic
Materials, in Machine Learning in Chemistry, The Royal Society
of Chemistry, 12, 280–310, 2020
9. Chen A., Zhang X., and Zhou Z., Machine Learning:
Accelerating Materials Development for Energy Storage and
Conversion, Info Mat, 2, 553–576, 2020.
10. Zhu H., Big Data and Artificial Intelligence Modeling for Drug Discovery, Annu. Rev. Pharmacol. Toxicol., 60, 573–589, 2020.
11. Yang X., Wang Y., Byrne R., Schneider G., and Yang S., Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery, Chem. Rev., 119, 18, 10520–10594, 2019.
12. Brown N., Ertl P., Lewis R., Luksch T., Reker D., and Schneider N., Artificial Intelligence in Chemistry and Drug Design, J. Comput. Aided. Mol. Des., 34, 709–715, 2020.
13. Schlexer Lamoureux P., Machine Learning for Computational Heterogeneous Catalysis, Chem Cat Chem, 11, 3581–3601, 2019.
14. Ma S., Kang P.L., Shang C., and Liu Z.P., Machine Learning
for Heterogeneous Catalysis: Global Neural Network Potential
from Construction to Applications, in Machine Learning in Chemistry, The Royal Society of Chemistry, 19, 488–511, 2020.
15. Yang W., Fidelis T.T., and Sun W. H., Machine Learning in Catalysis, From Proposal to Practicing, ACS Omega, 5, 83–88, 2020.
16. Haywood A. L., Redshaw J., Gaertner T., Taylor A., Mason A. M., and Hirst J. D., Machine Learning for Chemical Synthesis,
in Machine Learning in Chemistry, The Royal Society of Chemistry, 7, 169–194, 2020
17. Nair V. H., Schwaller P., and Laino T., Data-driven Chemical
Reaction Prediction and Retrosynthesis, Chimia (Aarau)., 73, 997-1000, 2019.
18. Choi W., Advincula R. C., Wu H. F., and Jiang Y., Artificial Intelligence and Machine Learning in the Design and Additive Manufacturing of Responsive Composites, MRS Commun.,13, 714–724, 2023.
19. Wang C., Tan X. P., Tor S. B., and Lim C. S., Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives, Addit. Manuf., 36, 101538-101558, 2020.
20. Burkov A., The Hundred-Page Machine Learning Book, Andriy Bur. Quebec City, QC, Canada, 2019.
21. Nasery S., Hoseinpour S., L. Phung T. K., and Bahadori A., Prediction of the Viscosity of Water-in-Oil Emulsions, Pet. Sci. Technol., 34, 1972–1977, 2016.
22. Ge Z., Chen T., and Song Z., “Quality Prediction for Polypropylene Production Process Based on CLGPR Model, Control Eng. Pract.,19, 423–432, 2011.
23. Zhang Y., Jin H., Liu H., Yang B., and Dong S., Deep Semi-Supervised Just-in-Time Learning Based Soft Sensor for Mooney Viscosity Estimation in Industrial Rubber Mixing Process, Polymers (Basel)., 14, 1018-1031, 2022.
24. Liang Y., Liu Z., and Liu W., A Co-training Style Semi-Supervised Artificial Neural Network Modeling and its Application in Thermal Conductivity Prediction of Polymeric Composites Filled with BN Sheets, Energy AI, 4, 100052-100061, 2021.
25. Singh V., and Kodamana H., Reinforcement Learning Based Control of Batch Polymerisation Processes, IFAC-
PapersOnLine, 53, 1, 667–672, 2020.
26. Ma Y., Zhu W., Benton M. G., and Romagnoli J., Continuous Control of a Polymerization System with Deep Reinforcement
Learning, J. Process Control, 75, 40–47, 2019.
27. Zhu H., Fei L., Yang Y., Lin C., Jingyuan L., Anhui G., Jianqiang Z.and Chunwang D., Application of Machine Learning Algorithms in Quality Assurance of Fermentation Process of Black Tea-Based on Electrical Properties, J. Food Eng., 263, 165–172, 2019.
28. Venkatasubramanian V., The Promise of Artificial Intelligence in Chemical Engineering: Is it Here, Finally?, AIChE J., 65, 466–478, 2019.
29. Nian R., Liu J., and Huang B., A Review on Reinforcement Learning: Introduction and Applications in Industrial Process Control, Comput. Chem. Eng., 139, 106886-106916, 2020.
30. Uhlemann J., Costa R., and Charpentier J.C., Product Design and Engineering in Chemical Engineering: Past, Present State, and Future, Chem. Eng. Technol., 42, 2258–2274, 2019.
31. Ghiba L., Drăgoi E.N., and Curteanu S., Neural Network-
Based Hybrid Models Developed for Free Radical Polymerization of Styrene, Polym. Eng. Sci., 61, 716–730, 2021.
32. Sadowski P., Fooshee D., Subrahmanya N., and Baldi P., Synergies Between Quantum Mechanics and Machine Learning in Reaction Prediction, J. Chem. Inf. Model., 56, 2125–2128, 2016.
33. Yan Y., Borhani T.N., and Clough P.T., Machine Learning Applications in Chemical Engineering, in Machine Learning in Chemistry, The Royal Society of Chemistry, 340–371, 2020.
34. Gaspar-Cunha A., Delbem A., Costa P., and Monaco F., Application of Artificial Intelligence Techniques in the
Optimization of Single Screw Polymer Extrusion, Congr. Métodos Numéricos en Ing., 2022.
35. Gaspar-Cunha A., Monaco F., Sikora J. W., and Delbem A., Multi-Objective Optimization of Single Screw Polymer Extrusion Based on Artificial Intelligence, Int. Conf. Process. Compos. Nanocomposites Mater., 2022.
36. Freddi A. and Salmon M., Introduction to the Taguchi Method, Springer Tracts in Mech Eng, 159–180, 2019.
37. Gaspar-Cunha A., Monaco F., Sikora J., and Delbem A., Artificial Intelligence in Single Screw Polymer Extrusion: Learning from Computational Data, Eng. Appl. Artif. Intell. 116, 105397, 2022
38. Ghaffarian N. and Hamedi M., Optimization of Rubber Compound Design Process Using Artificial Neural Network and Genetic Algorithm, International Journal of Engineering, Transactions B: Applications, 33, 2319–2326, 2020.
39. Correia S.L., Palaoro D., and Segadães A. M., Property Optimisation of EPDM Rubber Composites Using Mathematical and Statistical Strategies, Adv. Mater. Sci. Eng., 2017, 1–7, 2017.
40. Khan M. and Mazumder J., Application of Artificial Intelligence in New Materials Discovery, Materials Research Foundations, 2023.
41. Martin T.B. and Audus D.J., Emerging Trends in Machine Learning: A Polymer Perspective, ACS Polym. Au, 3, 239–258, 2023.