تخلیهبار محاسباتی آگاه از تحرک و انرژی در رایانش لبه برای شبکههای مبتنی بر چند پهپاد
الموضوعات :
1 - دانشكده مهندسي كامپيوتر، دانشگاه علم و صنعت ايران، تهران، ايران
2 - دانشكده مهندسي كامپيوتر، دانشگاه علم و صنعت ايران، تهران، ، ايران،
الکلمات المفتاحية: تخلیهبار محاسباتی, رایانش لبه, شبکههای مبتنی بر چند پهپاد,
ملخص المقالة :
شبکههای ارتباطی و اینترنت اشیا با توسعه مداوم، به نیازمندیهای مختلفی پاسخ میدهند. محدودیتهای اندازه، توان محاسباتی و مصرف انرژی در دستگاههای اینترنت اشیا چالشهای اساسی این فضا محسوب میشوند. این مقاله بر روی ترکیب پهپادها با رایانش لبه تاکید دارد بهطوریکه این یکپارچگی، پوشش پیشرفته و پشتیبانی محاسباتی کارآمد را فراهم میکند، به ویژه در شرایط نامعلوم مانند واکنش به حوادث. راهحل پیشنهادی، با لحاظ تحرک گرههای اینترنت اشیا و با هدف بهبود کارایی انرژی کل سیستم، مسئله برنامهریزی مسیر پهپاد و تخلیهبار محاسباتی به صورت توامان مدلسازی شده میکند. سپس، یک الگوریتم تخلیهبار محاسباتی و برنامهریزی مسیر آگاه از تحرک و انرژی بر مبنای مجموعه پوششی کارآمد پهپادها ارائه شده است که با استفاده از ارتباطات و توافقهای اجماعی بین گرههای اینترنت اشیا به حداکثر رساندن کارایی انرژی سیستم کمک میکند. نتایج ارزیابی نشان میدهد که روش پیشنهادی کارایی انرژی را تا ۱۳۷ درصد و میزان مصرف انرژی را تا ۲۸ درصد نسبت به کارهای پیشین بهبود می بخشد.
[1] Statista Research Department, Internet of Things - Number of Connected Devices Worldwide 2015-2025, https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/, Date Published: Nov 27, 2016, Last Access on Feb. 2024.
[2] C. Mateos, K. R. Choo, and A. Zunino, "Sharpening the edge: towards improved edge computing environment for mobile and IoT applications," Future Gener. Comput. Syst., vol. 107, pp. 1130-1133, Jun. 2020.
[3] W. Zhuang, Q. Ye, F. Lyu, N. Cheng, and J. Ren, "SDN/NFV-empowered future IoV with enhanced communication, computing, and caching," Proceedings of the IEEE, vol. 108, no. 2, pp. 274-291, Feb. 2020.
[4] T. Zhang, Y. Xu, J. Loo, D. Yang, and L. Xiao, "Joint computation and communication design for UAV-assisted mobile edge computing in IoT," IEEE Trans. Ind. Inform., vol. 16, no. 8, pp. 5505-5516, Oct. 2020.
[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A survey on mobile edge computing: the communication perspective," IEEE Commun. Surv. Tut., vol. 19, no. 4, pp. 2322-2358, Jan. 2017.
[6] X. Xiong, K. Zheng, L. Lei, and L. Hou, "Resource allocation based on deep reinforcement learning in IoT edge computing," IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 1133-1146, Apr. 2020.
[7] Z. Chang, L. Liu, X. Guo, and Q. Sheng, "Dynamic resource allocation and computation offloading for IoT fog computing system," IEEE Trans. Ind. Inform., vol. 17, no. 5, pp. 3348-3357, Jun. 2021.
[8] X. Hu, K. Wong, K. Yang, and Z. Zheng, "UAV-assisted relaying and edge computing: scheduling and trajectory optimization," IEEE Trans. Wirel. Commun., vol. 18, no. 10, pp. 4738-4752, Dec. 2019.
[9] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, and X. Shen, "Energy efficient UAV-assisted mobile edge computing: resource allocation and trajectory optimization," IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3424-3438, Jan. 2020.
[10] L. D. Nguyen, A. E. Kalør, I. L. Mayorga, and P. Popovski, "Trusted wireless monitoring based on distributed ledgers over NB-IoT connectivity," IEEE Commun. Mag., vol. 58, no. 6, pp. 77-83, Apr. 2020.
[11] M. Pradhan and J. Noll, "Security, privacy, and dependability evaluation in verification and validation life cycles for military IoT systems," IEEE Commun. Mag., vol. 58, no. 8, pp. 14-20, Aug. 2020.
[12] Z. Tan, H. Qu, J. Zhao, S. Zhou, and W. Wang, "UAV-aided edge/fog computing in smart IoT community for social augmented reality," IEEE Internet Things J., vol. 7, no. 6, pp. 4872-4884, Feb. 2020.
[13] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, "Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems," IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 1927-1941, Jun. 2018.
[14] L. Li, T. Q. S. Quek, J. Ren, H. H. Yang, Z. Chen, and Y. Zhang, "An incentive-aware job offloading control framework for multi-access edge computing," IEEE Trans. Mobile Comput., vol. 20, no. 1, pp. 63-75, Jan. 2021.
[15] K. Poularakis, J. Llorca, A. M. Tulino, I. J. Taylor, and L. Tassiulas, "Service placement and request routing in MEC networks with storage, computation, and communication constraints," IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1047-1060, Apr. 2020.
[16] K. Poularakis, J. Llorca, A. M. Tulino, I. J. Taylor, and L. Tassiulas, "Service placement and request routing in MEC networks with storage, computation, and communication constraints," IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1047-1060, Apr. 2020.
[17] T. Ouyang, Z. Zhou, and X. Chen, "Follow me at the edge: mobilityaware dynamic service placement for mobile edge computing," IEEE J. Sel. Areas Commun., vol. 36, no. 10, pp. 2333-2345, Sep. 2018.
[18] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, "Delayaware microservice coordination in mobile edge computing: a reinforcement learning approach," IEEE Trans. Mobile Comput., vol. 20, no. 3, pp. 939-951, Dec. 2021.
[19] Y. Liu, Y. Li, Y. Niu, and D. Jin, "Joint optimization of path planning and resource allocation in mobile edge computing," IEEE Trans. Mobile Comput., vol. 19, no. 9, pp. 2129-2144, Sept. 2020.
[20] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. Leung, "Joint trajectory and computation offloading optimization for UAV-assisted MEC with NOMA," in Proc. IEEE Conf. Comput. Commun. Workshops, 6 pp., Paris, France, 29 Apr.-2 May 2019.
[21] S. Jeong, O. Simeone, and J. Kang, "Mobile edge computing via a UAV-mounted cloudlet: optimization of bit allocation and path planning," IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2049-2063, Sept. 2018.
[22] Y. Qian, et al., "User association and path planning for UAV-aided mobile edge computing with energy restriction," IEEE Wirel. Commun. Lett., vol. 8, no. 5, pp. 1312-1315, Apr. 2019.
[23] X. Chen, et al., "Distributed computation offloading and trajectory optimization in multi-uav-enabled edge computing," IEEE Internet of Things, vol. 9, no. 20, pp. 20096-20110, May 2022.
[24] Q. Ye, et al., "Learningbased computing task offloading for autonomous driving: a load balancing perspective," in Proc. IEEE Int. Conf. Commun., 6 pp., Montreal, Canada, 14-23 Jun. 2021.
[25] I. A. Elgendy, S. Meshoul, and M. Hammad, "Joint task offloading, resource allocation, and load-balancing optimization in multi-UAV-aided MEC systems," Applied Sciences, vol. 13, no. 4, Article ID: 2625, Feb. 2023.
[26] B. Li, et al., "Robust computation offloading and trajectory optimization for multi-UAV-assisted MEC: a multi-agent DRL approach," IEEE Internet of Things J., vol. 11, no. 3, pp. 4775-4786, Aug. 2023.
[27] Z. Yu, Y. Gong, S. Gong, and Y. Guo, "Joint task offloading and resource allocation in UAV-enabled mobile edge computing," IEEE Internet Things J., vol. 7, no. 4, pp. 3147-3159, Jan. 2020.
[28] Y. Wang, Z. Ru, K. Wang, and P. Huang, "Joint deployment and task scheduling optimization for large-scale mobile users in multi-UAV-enabled mobile edge computing," IEEE Trans. Cybern., vol. 50, no. 9, pp. 3984-3997, Sept. 2020.
[29] A. Ranjha, G. Kaddoum, M. Rahim, and K. Dev, "URLLC in UAV-enabled multicasting systems: a dual time and energy minimization problem using UAV speed, altitude and beamwidth," Computer Communications, vol. 187, pp. 125-133, Apr. 2022.
[30] N. Lin, H. Tang, L. Zhao, S. Wan, A. Hawbani, and M. Guizani, "A PDDQNLP algorithm for energy efficient computation offloading in UAV-assisted MEC," IEEE Trans. on Wireless Communications, vol. 22, no. 12, pp. 8876-8890, Dec. 2023.
[31] M. Ma and Z. Wang, "Distributed offloading for multi-uav swarms in mec-assisted 5G heterogeneous networks," Drones, vol. 7, no. 4, Article ID: 226, Mar. 2023.