ژئوشیمی عناصر نادر خاکی و پرتوزا در فسفریت¬های معدن جیرود، البرز مرکزی، شمال ایران
الموضوعات :میلاد نجفی 1 , محمد یزدی 2 , خالق خشنودی 3 , مهرداد بهزادی 4
1 - دانشگاه شهید بهشتی
2 - دانشگاه شهید بهشتی
3 - پژوهشکده چرخه سوخت هسته ای، پژوهشگاه علوم و فنون هسته ای، سازمان انرژی اتمی
4 - دانشگاه شهید بهشتش
الکلمات المفتاحية: سازند جیرود, شمال ایران, عناصر نادر خاکی, فسفریت ,
ملخص المقالة :
معدن فسفریت جیرود در افق فسفات¬دار سازند جیرود باسن دونین پسین، در بخش مرکزی سازند جیرود و در بخش مرکزی زون زمین شناسی البرز مرکزی قرار دارد. رسوبات این سازند بیشتر از سنگ¬های آواری ماسه سنگ، شیل ماسه¬ای و آهک¬های ماسه¬ای تشکیل شده است. کانی¬سازی فسفریت به طور عمده در بخش شیلی آن متمرکز است. این پژوهش در زمینه میزان عیار و امکان بهره¬گیری از عناصر نادر خاکی در این فسفریت¬ها است. در این پژوهش، نمونه¬های سنگی به صورت تصادفی از لایه¬های فسفریتی برداشت شد. این نمونه¬ها برای اندازه¬گیری عناصر اصلی، عناصر فرعی و به خصوص عناصر نادر خاکی، با دستگاه طیف سنج جرمی – پلاسمای جفت شده القایی (ICP-MS) و دستگاه طیف سنج نشری پلاسمای جفت شده القایی (ICP-OES) تجزیه شدند. نتایج تجزیه¬های ژئوشیمیایی نشان داد که میانگین اکسید فسفر در این نمونه ها 60/29 درصد است. میانگین غلظت اورانیوم ppm 97/4 و توریوم ppm 64/8 است. همچنین نتائج تجزیه های ژئوشیمیایی نشان داد که عناصر نادر خاکی در نمونه-های فسفریتی معدن جیرود، 1/3 برابر نسبت به عناصر نادر خاکی در شیل¬های آمریکای شمالی (NASC) و 6/2 نسبت شیل¬های پسا¬آرکئن استرالیا (PAAS) غنی¬شدگی دارند. الگوهای REE به¬هنجار شده نمونه¬های کانسنگ فسفریت معدن جیرود نسبت به میانگین شیل¬های پساآرکئن استرالیا (PAAS) و شیل آمریکای شمالی (NASC) یک الگوی کم و بیش محدب، همراه با بی هنجاری مثبت ضعیف Ce و بی هنجاری مثبت متوسط Eu را نشان می¬دهند. همچنین در این نمونه¬ها تفریق ¬LREE¬ها ازHREE ¬ها روی داده است که دلیل اصلی آن تاثیر سازوکار جذب ترجیحی و دیاژنز پسین فسفریت¬ها می¬باشد. میزان غنی¬شدگی فسفر و عناصر نادرخاکی در این کانسار از نظر اقتصادی قابل توجه است ولی عناصر پرتوزا به طور اصولی غنی شدگی خاصی نشان نمی-دهد.
چشمه سری، م. عابدینی، ع. علیزاده، ا.، موسوی، س.م.، 1391. کانی¬شناسی و زمین¬شناسی عناصر نادر خاکی افق فسفاتی دلیر (جنوب غرب چالوس، استان مازندران). مجله زمین¬شناسی اقتصادی، دانشگاه فردوسی مشهد، 2 (4)، 319- 333.
حقی پور، ع.، وحدتی دانشمند، ف.، 1365. نقشه زمین¬شناسی تهران با مقیاس 1:250000، سازمان زمین¬شناسی و اکتشافات معدنی کشور.
محمدخانی، ح.، خزایی، م.، 1384. محیط رسوبی و چینه¬نگاری سکانسی سازند جیرود در دره مبارک آباد و شمال شرق روستای زایگون(البرزمرکزی). سازمان زمین¬شناسی و اکتشافات معدنی کشور، بیست و چهارمین گردهمایی علوم زمین.
مختاری، م،ع،ا.، ۱۳۸۴. ژئوشیمی عناصر نادر خاکی کانسارهای آهن- آپاتیت ناحیه بافق و مقایسه آن با ژئوشیمی تودههای سینیتی مجاور و منشأ احتمالی آنها. سازمان¬زمین¬شناسی و اکتشافات معدنی کشور، بیست و چهارمین گردهمایی علوم زمین.
معانی جو، م. رسا، ا. لنتز، د.، 1387. سنگ نگاری و دگرسانی کانسار مس چهل کوره، شمال باختر زاهدان: موازنه جرم و رفتار عناصر نادر کمیاب. فصلنامه علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور، 17 (67)، 86- 101.
نجفی، م.، 1397. کانی¬شناسی و ژئوشیمی عناصر نادر خاکی در فسفریت¬های معدن جیرود البرز غربی. پایان نامه-کارشناسی ارشد، دانشگاه شهید بهشتی، 195.
نمدمالیان اصفهانی، ع.، 1368. پترولوژی فسفریت جیرود پهنه شمال تهران، پایان¬نامه کارشناسی ارشد، دانشگاه آزاد اسلامی، واحد شمال، 186.
هلالات، ه.، بلورچی، م.، 1373. زمین¬شناسی ایران: فسفات. انتشارات سازمان زمین¬شناسی و اکتشافات معدنی کشور، 323.
یزدی، م.، حداد، ف.، 1399، مقدمه¬ای بر عناصر نادر خاکی. جهاد دانشگاهی واحد شهيد بهشتی، 168.
یزدی، م.، خشنودی، خ.، 1385، کانسارهای گرمابی اورانیوم. انتشارات سازمان انرژی اتمی، 257.
Altschuler, Z. S., 1980. The geochemistry of trace metals in marine phosphorites: Part 1. Characteristic abundances and enrichment. In: Bentor, Y. K. (Ed.), Marine phosphorites. The Society of economic and paleontologist and mineralogists, special publication, 29: 19-30.
Assereto, R., 1963. The Paleozoic formations in Central Elburz (Iran) (preliminary note). Rivista Italiana di Paleontologia e Stratigrafia, 69: 503-543.
Awadalla, G. S., 2010. Geochemistry and microprobe investigations of Abu Tartur REE-bearing phosphorite, Western Desert, Egypt. Journal of African Earth Sciences, 57: 431-443.
Bau, M. and Dulski, P., 1996. Distribution of yttrium and rare earth elements in the Penge and Kuruman iron-formations. Transvaal Supergroup, South Africa. Precambrian Research, 79: 37-55.
Chen, D., Dong, W., Liang, Q., Qian Chen, G.and Pei Chen, X., 2003. Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna. Chemical Geology, 201: 103-118.
Cook, P. J. and Mc Elhinny, M. W., 1979, a Reevaluation of the Spatial and Temportal Distribution of Sedimentary Phosphate Deposits in the light of Plate Tectonics. economic geology., 74: 315-330.
Elderfield, H. and Greaves, M. J., 1982, The rare earth elements in seawater. Nature 296: 214-219.
Felitsyn, S. and Morad, S., 2002, REE patterns in latest Neoproterozoic–early Cambrian phosphate concretions and associated organic matter. Chemical Geology, 187: 257-265.
Ghorbani, M., 2013, The economic geology of Iran, mineral deposits and natural resources. Springer Geology, 569.
Gomez-Perala, L. E., Kaufmanb, A. J. and Poiré, D. G., 2014, Paleoenvironmental implications of two phosphogenic events in Neoproterozoic sedimentary successions of the Tandilia System. Argentina, Precambrian Research, 252: 88-106.
Gulbrandsen, R.A., 1966, Chemical composition of phosphorites of the Phosphoria Formation: Geochim. E GULBARNDSEN R.A. 1969: Physical composition of phosphorites of the formation of marine apatite economic geology., 64 (4) : 365-382.
Hogdahle, O. T., Melson, S. and Bowen, V. T., 1968, Neutron activation analysis of lanthanide elements in seawater. Chemical Geology, 73: 308 – 325.
Khan, K. F., Dar, S. A. and Saif, A., 2012, Geochemistry of phosphate bearing sedimentary rocks in parts of Sonrai block, Lalitpur District, Uttar Pradesh, India. Chemie der Erde 72: 117-125.
Kidder, D., Krishnaswamy, R. and Mapes, R. H., 2003, Elemental mobility in phosphatic shales during concretion growth and implication for provenance analysis. Chemical Geology, 198: 335.
McLennan, S. M., 1989, Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry 21: 169-200.
Ogihara, S., 1999, Geochemical characteristics of phosphorite and carbonate nodules from the Miocene Funakawa Formation, western margin of the Yokote Basin, northeast Japan. Sedimentary Geology, 125: 69.
Peter Gromet L., Larry, A., Randy, L. and Robert, F., 1984. The North American shale composite: Its compilation, major and trace element characteristics-Geochimica et Cosmochimica Acta, 48(12): 2469-2482.
Reynard, B., Lecuyer, C. and Grandjean, P., 1999, Crystal-chemical controls on rare earth element concentrations in fossil biogenic apatites and implications for paleoenviromental reconstructions. Chemical Geology, 155: 233-241.
Shields G. and Stille P., (2001), Diagenetic constrains on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175: 29-48.
Wright, J., Schrader, H. and Holser, W.T., 1987, Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim. Cosmochim. Acta, 51: 637-64.