مروری بر خواص مکانیکی کامپوزیت های پلیمری تقویت شده با نانولوله های کربنی
الموضوعات :عهدیه امجدی 1 , فرشته براق جم 2
1 - مراغه، دانشگاه مراغه، دانشکده فنی و مهندسی، گروه مهندسی شیمی، صندوق پستی ۸۳۱۱۱-۵۵۱۸۱
2 - مراغه، دانشگاه مراغه، دانشکده فنی و مهندسی، گروه مهندسی شیمی، صندوق پستی ۸۳۱۱۱-۵۵۱۸۱
الکلمات المفتاحية: نانوکامپوزیت, پلیمر, عامل تقویتکننده, نانولولههای کربنی, خواص مکانیکی,
ملخص المقالة :
پیشرفتها در سنتز و تولید صنعتی نانومواد کربنی مانند نانولولههای کربنی (CNTها) بهطور گسترده در صنعت مواد پلیمری در چند دهه گذشته به کار گرفته شده است که منجر به ایجاد گروهی از کامپوزیتهای پلیمری تقویت¬شده با نانولولههای کربنی شده است. کامپوزیتهای پلیمری تقویت¬شده با CNTها دارای قابلیت استفاده در کاربردهای گوناگون مانند صنایع نظامی، صنایع حملونقل، هوافضا، خودرو و تجهیزات ورزشی هستند. CNTها دارای خواص حرارتی، الکتریکی و مکانیکی مطلوب و همچنین چگالی پایین هستند که محققان را به استفاده از آن¬ها در ساخت کامپوزیتهای پلیمری ترغیب می¬کند. کامپوزیتهای پلمیری بهدلیل داشتن وزن پایین، خواص مکانیکی مطلوب و فرایندهای تولید متنوع نسبت به سایر انواع کامپوزیت¬ها و مواد مهندسی دیگر، مورد استقبال بسیاری از پژوهشگران و صنعتگران قرار گرفته است. از طرفی CNTها بهدلیل ابعاد نانومتری و نیز استحکام خارقالعاده، بهعنوان تقویتکنندههای مکانیکی برای کاربردهای ساختاری مختلف منحصربهفرد هستند. در این مطالعه مروری سعی شده است پژوهشهای انجامشده در زمینه خواص مکانیکی کامپوزیتهای پلیمری تقویتشده با CNT بررسی شود. در ادامه تأثیر چندین عامل مؤثر بر خواص مکانیکی کامپوزیتهای پلیمری تقویتشده با CNT از جمله مقدار، شکل و سطح تماس عامل تقویتکننده با ماتریس پلیمری مشخص شد.
1. Li Y., Huang X., Zeng L., Li R., Tian, H., Fu X., Wang Y., Zhong W.H. A Review of the Electrical and Mechanical Properties of Carbon Nanofiller-Reinforced Polymer Composites. Journal of Materials Science, 54, 1036–1076, 2019.
2. Nurazzi N.M., Sabaruddin F.A., Harussani M.M., Kamarudin S.H., Rayung M., Asyraf M.R.M., Aisyah H.A., Norrrahim M.N.F., Ilyas R.A., Abdullah N., Zainudin E.S., Sapuan S.M., Khalina A., Mechanical Performance and Applications of CNTs Reinforced Polymer Composites-A Review. Nanomaterials (Basel), 11, 2186, 2021.
3. Saifuddin N., Raziah A., and Junizah A., Carbon Nanotubes: A Review on Structure and Their Interaction with Proteins. Journal of Chemistry, 2013, 2013.
4. Takakura A., Beppu K., Nishihara T., Strength of Carbon Nanotubes Depends on Their Chemical Structures. Nature Communications, 10, 3040, 2019.
5. https://www.fortunebusinessinsights.com/carbon-nanotubes-cnt-market-102700. Available in Nov, 2021.
6. Zakaria M. R., Md Akil H., Abdul Kudus M. H., Ullah F., Javed F., Nosbi N., Hybrid Carbon Fiber-Carbon Nanotubes Reinforced Polymer Composites: A Review. Composites Part B: Engineering, 176, 2019.
7. Xie S., Li W., Pan Z., Chang B., Sun L., Mechanical and Physical Properties on Carbon Nanotube. Journal of Physics and Chemistry of solids, 61, 1153-1158, 2000.
8. Egbo, M.K., A Fundamental Review on Composite Materials and Some of Their Applications in Biomedical Engineering. Journal of King Saud University-Engineering Sciences, 33, 557-568, 2021.
9. Kumar A., Sharma K., and Dixit A.R., A Review on the Mechanical Properties of Polymer Composites Reinforced by Carbon Nanotubes and Graphene. Carbon Letters, 31, 149-165, 2021.
10. Kumar A., Sharma K., and Dixit A.R., Carbon Nanotube-And Graphene-Reinforced Multiphase Polymeric Composites: Review on Their Properties and Applications. Journal of Materials Science, 55, 2682-2724, 2019.
11. Hsissou, R., Seghiri R., Benzekri Z., Hilali M., Polymer Composite Materials: A Comprehensive Review. Composite structures, 262, 113640, 2021.
12. Al-Saleh M.H., and Sundararaj U., Review of the Mechanical Properties of Carbon Nanofiber/Polymer Composites. Composites Part A: Applied Science and Manufacturing, 42, 2126-2142, 2011.
13. Karthik, K., Rajamani D., Manimaran A., Udayaprakash J., Evaluation of Tensile Properties on Glass/Carbon/Kevlar Fiber Reinforced Hybrid Composites. Materials Today: Proceedings, 39, 1655-1660, 2021.
14. Coleman J. N., Khan U., Blau W. J., Gunko Y.K., Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites, Carbon, 44, 1624-1652, 2006.
15. Mei, H., Xia J., Han D., Xiao S., Deng J., Dramatic Increase in Electrical Conductivity in Epoxy Composites with Uni-Directionally Oriented Laminae of Carbon Nanotubes. Chemical Engineering Journal, 304, 970-976, 2016.
16. Mecklenburg M., Mizushima D., Ohtake N., Bauhofer W., Fiedler B., Schulte K., On the Manufacturing and Electrical and Mechanical Properties of Ultra-High Wt.% Fraction Aligned MWCNT and Randomly Oriented CNT Epoxy Composites. Carbon, 91, 275-290, 2015.
17. Kalakonda P., and Banne S., Thermomechanical Properties of PMMA and Modified SWCNT Composites. Nanotechnology, science and applications, 10, 45-52, 2017.
18. Behera R.P., Rawat P., Tiwari S. K., Singh K. K., A Brief Review on the Mechanical Properties of Carbon Nanotube Reinforced Polymer Composites. Materials Today: Proceedings, 22, 2109-2117, 2020.
19. Zhou S., Hrymak A.N., Kamal M.R., Electrical, Thermal, and Mechanical Properties of Polypropylene/Multiwalled Carbon Nanotube Micromoldings. Polymer Composites, 41, 1507-1520, 2020.
20. Venkatesan M., Palanikumar K., Boopathy S.R., Experimental Investigation and Analysis on the Wear Properties of Glass Fiber and CNT Reinforced Hybrid Polymer Composites. Science and Engineering of Composite Materials, 25, 963-974, 2018.
21. Scaffaro R., and Maio A., Integrated Ternary Bionanocomposites with Superior Mechanical Performance via the Synergistic Role of Graphene and Plasma Treated Carbon Nanotubes. Composites Part B: Engineering, 168, 550-559, 2019.
22. Zhang W.D., Shen L., Phang I.Y., Liu T., Carbon Nanotubes Reinforced Nylon-6 Composite Prepared by Simple Melt-Compounding. Macromolecules, 37, 256-259, 2004.
23. Tang L.-C., Wan Y.-J., Peng K., Pei Y., Wu, L., Chen L., Shu L., Jiang J., Lai G., Fracture Toughness and Electrical Conductivity of Epoxy Composites Filled with Carbon Nanotubes and Spherical Particles. Composites Part A: Applied Science and Manufacturing, 45, 95-101, 2013.
24. Zhang J., Ju S., Jiang D., Peng H., Reducing Dispersity of Mechanical Properties of Carbon Fiber/Epoxy Composites by Introducing Multi-Walled Carbon Nanotubes. Composites Part B: Engineering, 54, 371-376, 2013.
25. Zhang W., Picu R., Koratkar N., The Effect of Carbon Nanotube Dimensions and Dispersion on the Fatigue Behavior of Epoxy Nanocomposites. Nanotechnology, 19, 285709, 2008.
26. Mousavi S., Alignment of Multi Wall Carbon Nanotube in Epoxy Polymer Matrix and Investigating the Effect of CNT’s Alignment on the Mechanical Properties of Composite. In Proceedings of the Second International Conference on New Approaches in Science, Engineering and Technology, Istanbul, Turkey. 2015.
27. Kim S., Jung S., Kim W.-J., Vertical Alignment of Carbon Nanotubes in Photo-Curable Polymer for Multi-Functional Hybrid Materials. Applied Surface Science, 612, 155749, 2023.
28. Koirala P., Werken N., Lu H., Baughman R.H., Ovalle-Robles R., Tehrani M., Using Ultra-Thin Interlaminar Carbon Nanotube Sheets to Enhance the Mechanical and Electrical Properties of Carbon Fiber Reinforced Polymer Composites. Composites Part B: Engineering, 216, 108842 2021.
29. Boroujeni A.Y. and Al-Haik M., Carbon Nanotube – Carbon Fiber Reinforced Polymer Composites with Extended Fatigue Life. Composites Part B: Engineering, 164, 537-545, 2019.
30. Grimmer C.S. and Dharan C.K.H., High-Cycle Fatigue of Hybrid Carbon Nanotube/Glass Fiber/Polymer Composites. Journal of Materials Science, 43, 4487-4492, 2008.
31. Davis D.C., Wilkerson J.W., Shu J., Ayewah D., Improvements in Mechanical Properties of A Carbon Fiber Epoxy Composite Using Nanotube Science and Technology. Composite Structures, 92, 2653-2662, 2010.
32. Borrego L.P., Costa J.D.M., Ferreira J.A.M., Silva H., Fatigue Behaviour of Glass Fibre Reinforced Epoxy Composites Enhanced with Nanoparticles. Composites Part B: Engineering, 62, 65-72, 2014.
33. Yousefi N., Fisher S.J., Burgstaller C. Shaffer M.S.P., Bismarck A., Hierarchical Carbon Fibre Composites Incorporating High Loadings of Carbon Nanotubes. Composites Science and Technology, 222, 109369, 2022.
34. Qian H., Greenhalgh E.S., Shaffer M.S.P., Bismarck A., Carbon Nanotube-Based Hierarchical Composites: A Review. Journal of Materials Chemistry, 20, 4751-4762, 2010.
35. Lesko J.J., Swain R.E., Cartwright J.M., Chin J.W., Reifsnider K.L., Dillard D.A., Wightman J.P., Interphases Developed from Fiber Sizing’s and Their Chemical-Structural Relationship to Composite Compressive Performance, The Journal of Adhesion, 45, 43-58, 2020.
36. Han L., Li k., Xiao C., Yin X., Gui X., Song Q., Ye F., Carbon Nanotube-Vertical Edge Rich Graphene Hybrid Sponge as Multifunctional Reinforcements for High Performance Epoxy Composites. Carbon, 201, 871-880, 2023.
37. Liu Y., Li J., Kuang Y., Interlaminar Properties of Carbon Nanotubes Modified Carbon Fibre Fabric Reinforced Polyimide Composites. Journal of Composite Materials, 57, 1277-1288, 2023.
38. Jongvivatsakul, P., Thongchom C., Mathuros A., Prasertsri T., Adamu M., Orasutthikul S., Lenwari A., Charainpanitkul T., Enhancing Bonding Behavior Between Carbon Fiber-Reinforced Polymer Plates and Concrete Using Carbon Nanotube Reinforced Epoxy Composites. Case Studies in Construction Materials, 17, 01407, 2022.