ارزیابی چرخه زندگی اثرات و زیستمحیطی نیروگاه بادی فراساحلی
الموضوعات :امید سلمانی نژاد 1 , سید مجید کشاورز 2
1 - دانشگاه فنی حرفه ای
2 - دانشگاه فنی و حرفه ای استان یاسوج، ایران،
الکلمات المفتاحية: منطقه اعماق دریا, باد دریایی, نیروگاه بادی فراساحلی , ارزیابی چرخه حیات, تأثیرات محیطی, انتشار گازهای گلخانهای, ,
ملخص المقالة :
یک نیروگاه بادی یا مزرعهٔ بادی، مجموعهای از چندین توربین بادی است که در یک مکان قرار گرفتهاند. یک نیروگاه بادی بزرگ میتواند شامل چندصد توربین بادی باشد. چنین مجموعهای میتواند بر روی دریا قرار گرفته باشد. نیروی بادی شناور دریایی، یک فناوری نوظهور در صنعت باد فراساحلی، توجه فزایندهای را به دلیل پتانسیل خود برای همکاری با سایر انرژیهای تجدیدپذیر برای کربنزدایی سیستمهای انرژی به خود جلب کرده است. اثرات زیستمحیطی مزرعه بادی دریایی شناور در مناطق اعماق دریا باید در نظر گرفته شود و روشهایی برای تقویت اثر کمکربن باید ابداع شود. مطالعات کمی برای ارزیابی اثرات زیستمحیطی مزرعه بادی شناور دریایی انجامشده است، اما مقیاس این مطالعات نسبتاً کوچک بود. مزرعه بادی فراساحلی در آینده، دادههای پایه بیشتری برای بهبود قابلیت اطمینان LCA باید جمعآوری شود. اثرات مزرعه بادی دریایی شناور بر اکولوژی دریایی و ویژگیهای فیزیکی جوی باید در عمق موردبررسی قرار گیرد. کلیدواژهها: منطقه اعماق دریا،باد دریایی،نیروگاه بادی فراساحلی ،ارزیابی چرخه حیات،تأثیرات محیطی،انتشار گازهای گلخانهای،
References
1. O. Ellabban, H. Abu-Rub, F. Blaabjerg. Renewable energy resources: current status, future prospects and their enabling technology. Renew Sustain Energy Rev, 39 (2014), pp. 748-764
2. J.C. Feng, J. Yan, Y. Wang, Z. Yang, S. Zhang, S. Liang, et al. Methane mitigation: learning from the natural marine environment Innovation, 3 (2022), p. 100297
3. N. Watts, M. Amann, N. Arnell, S. Ayeb-Karlsson, K. Belesova, M. Boykoff, et al. .The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate Lancet, 394 (2019), pp. 1836-1878
4. J.D. Fonseca, J.M. Commenge, M. Camargo, L. Falk, I.D. Gil. Sustainability analysis for the. design of distributed energy systems: a multi-objective optimization approach. Appl Energy, 290 (2021), p. 116746
5. R. Madurai Elavarasan, R. Pugazhendhi, T. Jamal, J. Dyduch, M.T. Arif, N. Manoj Kumar, et al. Envisioning the UN Sustainable Development Goals (SDGs) through the lens of energy. sustainability (SDG 7) in the post-COVID-19 world. Appl Energy, 292 (2021), p. 116665
6. J.H. Williams, A. DeBenedictis, R. Ghanadan, A. Mahone, J. Moore, W.R. Morrow 3rd, et al. The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity.Science, 335 (2012), pp. 53-59
7. IEA. Renewables 2021-analysis and forecast to2026. 2021.
8. IRENA. Offshore renewables: an action agenda for deployment. 2021.
9. Myhr, C. Bjerkseter, A. Ågotnes, TA. Nygaard. Levelised cost of energy for offshore floating wind turbines in a life cycle perspective. Renew Energy, 66 (2014), pp. 714-728
A. Garcia-Teruel, G. Rinaldi, P.R. Thies, L. Johanning. Life cycle assessment of floating offshore wind farms: an evaluation of operation and maintenance. Appl Energy, 307 (2022), p. 118067
10. GWEC. Global offshore wind report 2021. 2021.
11. N.Y. Sergiienko, L.S.P. da Silva, E.E. Bachynski-Polić, B.S. Cazzolato, M. Arjomandi, B. Ding
12. Review of scaling laws applied to floating offshore wind turbines. Renew Sustain Energy Rev, 162 (2022), p. 112477
13. J. López-Queija, E. Robles, J. Jugo, S. Alonso-Quesada. Review of control technologies for floating offshore wind turbines. Renew Sustain Energy Rev, 167 (2022), p. 112787
14. J. Keighobadi, H. Mohammadian KhalafAnsar, P. Naseradinmousavi. Adaptive neural dynamic surface control for uniform energy exploitation of floating wind turbine. Appl Energy, 316 (2022), p. 119132
B. Maienza, A.M. Avossa, F. Ricciardelli, D. Coiro, G. Troise, C.T. Georgakis. A life cycle cost model for floating offshore wind farms. Appl Energy, 266 (2020), p. 114716
15. L. Zhang, Y. Li, W. Xu, Z. Gao, L. Fang, R. Li, et al.. Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions. Appl Energy, 321 (2022), p. 119341
16. Rashedi, I. Sridhar, KJ. Tseng. Life cycle assessment of 50MW wind firms and strategies for impact reduction. Renew Sustain Energy Rev, 21 (2013), pp. 89-101
17. S.M. Jordaan, C. Combs, E. Guenther. Life cycle assessment of electricity generation: a systematic review of spatiotemporal methods. Adv Appl Energy, 3 (2021), p. 100058
C. Mendecka, L. Lombardi. Life cycle environmental impacts of wind energy technologies: a review of simplified models and harmonization of the results. Renew Sustain Energy Rev, 111 (2019), pp. 462-480
18. J. Weinzettel, M. Reenaas, C. Solli, E.G. Hertwich. Life cycle assessment of a floating offshore wind turbine. Renew Energy, 34 (2009), pp. 742-747
19. H.L. Raadal, B.I. Vold, A. Myhr, T.A. Nygaard. GHG emissions and energy performance of offshore wind power. Renew Energy, 66 (2014), pp. 314-324
20. L. Tsai, J.C. Kelly, B.S. Simon, R.M. Chalat, G.A. Keoleian
21. Life cycle assessment of offshore wind farm siting: effects of locational factors, lake depth, and distance from shore. J Ind Ecol, 20 (2016), pp. 1370-1383
22. N. Elginoz, B. Bas. Life cycle assessment of a multi-use offshore platform: combining wind and wave energy production. Ocean Eng, 145 (2017), pp. 430-443
23. J. Chipindula, V. Botlaguduru, H. Du, R. Kommalapati, Z. Huque. Life cycle environmental impact of onshore and offshore wind farms in Texas. Sustainability, 10 (2018), p. 2022
24. S. Wang, S. Wang, J. Liu. Life-cycle green-house gas emissions of onshore and offshore wind turbines. J Cleaner Prod, 210 (2019), pp. 804-810
25. B. Poujol, A. Prieur-Vernat, J. Dubranna, R. Besseau, I. Blanc, P. Pérez-López. Site-specific life cycle assessment of a pilot floating offshore wind farm based on suppliers’ data and geo-located wind dat. J Ind Ecol, 24 (2020), pp. 248-262
26. N. Yildiz, H. Hemida, C. Baniotopoulos. Life cycle assessment of a barge-type floating wind turbine and comparison with other types of wind turbines. Energies, 14 (2021), p. 5656
27. J.P. Jensen. Evaluating the environmental impacts of recycling wind turbines. Wind Energy, 22 (2019), pp. 316-326
28. Standardization ECf. Environmental management-Life cycle assessment-Principles and framework (ISO 14040:2006). 2006.
29. Standardization ECf. Environmental management-Life cycle assessment-Requirements and guidelines (ISO 14044:2006). 2018.
30. M. Pan, J. Sikorski, J. Akroyd, S. Mosbach, R. Lau, M. Kraft. Design technologies for eco-industrial parks: from unit operations to processes, plants and industrial networks. Appl Energy, 175 (2016), pp. 305-323
31. Farina, A. Anctil. Material consumption and environmental impact of wind turbines in the USA and globally. Resour Conserv Recycl, 176 (2022), p. 105938
32. Hasanbeigi A. Steel climate impact:an international benchmarking of energy and CO2 intensities. 2022.
33. KOWL. Kincardine offshore windfarm project - Section 36C variation environmental. statement:Tech. rep. 2017.
34. B. Zhao, C. Shuai, P. Hou, S. Qu, M. Xu. Estimation of unit process data for life cycle assessment using a decision tree-based approach Environ Sci Technol, 55 (2021), pp. 8439-8446
D. Herrmann, W. Dewulf, M. Hauschild, A. Kaluza, S. Kara, S. Skerlos. Life cycle engineering of lightweight structures. CIRP Ann, 67 (2018), pp. 651-672
35. CLCD. CLCD-the basic database of life cycle assessment in China. https://www.ike-global.com/
36. Ecoinvent. Ecoinvent - the world's most consistent & transparent life cycle inventory database. https://ecoinvent.org/
37. M. Jansen, C. Duffy, T.C. Green, I. Staffell. Island in the Sea: The prospects and impacts of an offshore wind power hub in the North Sea. Adv Appl Energy, 6 (2022), p. 100090
38. X. Sun, D. Huang, G. Wu. The current state of offshore wind energy technology development Energy, 41 (2012), pp. 298-312
39. Energy FW. Windfloat gen 3 — principle power – quest floating wind energy. https://www.principlepower.com/windfloat2020
40. Statoil. Hywind Scotland pilot park project - environmental statement: Tech. Rep. https://tethys.pnnl.gov/publications/hywind-scotland-pilot-park-environmental-statement2015
41. L. Castro-Santos, V. Diaz-Casas, R.Y. Brage. The importance of the activity costs in a shipyard: a case study for floating offshore wind platforms. Ships Offshore Struct, 15 (2020), pp. 53-60
42. Arvesen, C. Birkeland, E.G. Hertwich. The importance of ships and spare parts in LCAs of offshore wind power. Environ Sci Technol, 47 (2013), pp. 2948-2956
43. M. Suvarna, A. Katragadda, Z. Sun, Y.B. Choh, Q. Chen, P. Ps, et al.. A machine learning framework to quantify and assess the impact of COVID-19 on the power sector: An Indian context. Adv Appl Energy, 5 (2022), p. 100078
44. R.E. Kirchain Jr., J.R. Gregory, E.A. Olivett. Environmental life-cycle assessment
45. Nat Mater, 16 (2017), pp. 693-697
46. J. Guinée. Handbook on life cycle assessment — operational guide to the ISO standards
47. Int J Life Cycle Assess, 6 (2001), p. 255
48. Wade, P. Stolz, R. Frischknecht, G. Heath, P. Sinha. The Product Environmental Footprint (PEF) of photovoltaic modules-Lessons learned from the environmental footprint pilot phase on the way to a single market for green products in the European Union. Prog Photovolt Res Appl, 26 (2018), pp. 553-564
49. IKE Environmental Technology Co. L. eFootprint—the world's first online LCA evaluation system. http://v2.efootprint.net/
50. A.W. Sleeswijk, L.F. van Oers, J.B. Guinee, J. Struijs, M.A. Huijbregts. Normalisation in product life cycle assessment: an LCA of the global and European economic systems in the year 2000. Sci Total Environ, 390 (2008), pp. 227-240
51. Y. Yao, Y. Chang, E. Masanet. A hybrid life-cycle inventory for multi-crystalline silicon PV module manufacturing in China. Environ Res Lett, 9 (2014), p. 114001
52. N.Y. Amponsah, M. Troldborg, B. Kington, I. Aalders, RL. Hough. Greenhouse gas emissions from renewable energy sources: a review of lifecycle considerations. Renew Sustain Energy Rev, 39 (2014), pp. 461-475
53. H.L. Raadal, L. Gagnon, I.S. Modahl, OJ. Hanssen. Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power. Renew Sustain Energy Rev, 15 (2011), pp. 3417-3422
54. Nugent, BK. Sovacool. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: a critical meta-survey. Energy Policy, 65 (2014), pp. 229-244
55. Lennon, M. Lunardi, B. Hallam, P. Dias. The aluminium demand risk of terawatt photovoltaics for net zero emissions by 2050. Nature Sustain, 5 (2022), pp. 357-363
56. J. Oda, K. Akimoto, T. Tomoda. Long-term global availability of steel scrap Resour Conserv Recycl, 81 (2013), pp. 81-91
57. J.C. Feng, J. Liang, Y. Cai, S. Zhang, J. Xue, Z. Yan. Deep-sea organisms research oriented by deep-sea technologies development. Sci Bull, 67 (2022), pp. 1802-1816
58. S. Suh, M. Lenzen, G.J. Treloar, H. Hondo, A. Horvath, G. Huppes, et al.. System boundary selection in life-cycle inventories using hybrid approaches. Environ Sci Technol, 38 (2004), pp. 657-664
59. B. Su, B.W. Ang. Multiplicative decomposition of aggregate carbon intensity change using input–output analysis. Appl Energy, 154 (2015), pp. 13-20
60. I.M. Sobol, Y.L. Levitan. On the use of variance reducing multipliers in Monte Carlo computations of a global sensitivity index. Comput Phys Commun, 117 (1999), pp. 52-61
61. S. Chakraborty, R. Chowdhury. A hybrid approach for global sensitivity analysis. Reliab Eng Syst Saf, 158 (2017), pp. 50-57