مروری بر ترکیبات جفت شده پلیمر-پروتئین
الموضوعات :
1 - دانشگاه تربیت مدرس
الکلمات المفتاحية: پروتئین تقویت شده, مزدوج پلیمر-پروتئین, دارورسانی هدفمند,
ملخص المقالة :
امروزه به لطف توسعه زیست فناوری های دارویی، پروتئین ها و پپتید ها به موادی قوی و خاص تبدیل شده اند که به عنوان عوامل جایگزین، مهار کننده و یا تنظیم کننده سامانه ایمنی برای معالجه بیماری های مختلف به کار می روند. با این حال، پروتئین ها دارای محدودیت های ذاتی مانند ایمنی زایی، پایداری کم در بدن و نیمه عمر کوتاه در کاربرد های درمانی هستند. در این بین، تهیه ترکیبات جفت شده پلیمر-پروتئین، رویکردی شناخته شده برای بهبود خواص درمانی پروتئین ها، پپتید ها یا کوچک مولکول ها است که به طور گسترده ای استفاده می شود. در ترکیبات جفت شده پلیمر-پروتئین (Polymer-Protein Conjugations)، پلیمر ها با پروتئین ها یا دارو ها، برای دستیابی به سامانه های زیست تخریب پذیر و حساس به محرّک ها، جفت شده و باعث افزایش زمان گردش خون و غلظت دارو در محل مورد نظر می شوند. با توجهِ روز افزون به معالج های پروتئینی، ترکیبات جفت شده پلیمر-پروتئین نقش مهمی را در غلبه بر نقاط ضعف این معالج ها (بی ثباتی و پاک سازی سریع در داخل بدن) و بهبود عملکرد آن ها ایفا می کنند. در این مقاله، مروری بر انتخاب پروتئین، انتخاب پلیمر، روش مزدوجسازی پلیمر-پروتئین و همچنین ارزیابی مزدوج حاصل شده، صورت می گیرد.
1. Ko J. H., Maynard H. D., A Guide to Maximizing the Therapeutic Potential of Protein–polymer Conjugates by Rational Design, Chemical Society Reviews, 47, 8998-9014, 2018.
2. Khandare J., Minko, T., Polymer–drug Conjugates: Progress in Polymeric Prodrugs, Progress in Polymer Science, 31, 359-397, 2006.
3. Seifu M. F., Nath L. K., Polymer-drug Conjugates: Novel Carriers for Cancer Chemotherapy, Polymer-plastics Technology and Materials, 58, 158-171, 2019.
4. Pasut G., Veronese, F. M., Polymer–drug Conjugation, Recent Achievements and General Strategies, Progress in Polymer Science, 32, 933-961, 2007.
5. Pang X., Du H. L., Zhang H. Q., Zhai Y. J., Zhai G. X., Polymer–drug Conjugates: Present State of Play and Future Perspectives, Drug Discovery Today, 18, 1316-1322, 2013.
6. Ekladious I., Colson, Y. L., Grinstaff M. W., Polymer–drug Conjugate Therapeutics: Advances, Insights and Prospects, Nature Reviews Drug discovery, 18, 273-294, 2019.
7. Mishra P., Nayak B., Dey R. K., PEGylation in Anti-cancer Therapy: An Overview, Asian Journal of Pharmaceutical Sciences, 11, 337-348, 2016.
8. Fan Z., Guan J., Antifibrotic Therapies to Control Cardiac Fibrosis, Biomaterials Research, 20, 1-13, 2016.
9. Pasut G., Polymers for Protein Conjugation, Polymers, 6, 160-178, 2014.
10. Chen S., Wu J., Tang Q., Xu C., Huang Y., Huang D., Lou F., Wu Y., Weng Z., Wang S., Nano-micelles Based on Hydroxyethyl Starch-curcumin Conjugates for Improved Stability, Antioxidant and Anticancer Activity of Curcumin, Carbohydrate Polymers, 228, 115398, 2020.
11. Zheng L., Sundaram H. S., Wei Z., Li C., Yuan Z., Applications of Zwitterionic Polymers, Reactive and Functional Polymers, 118, 51-61, 2017.
12. Wang W., Park, K., Biomimetic Polymers for in Vivo Drug Delivery, Bioinspired Biomim. Polym. Syst. Drug Gene Deliv, 109-148, 2014.
13. Patel G. C., Parmar V. K., Patel P. S., Stimuli-responsive Polymers for Ocular Therapy, Elsevier Ltd, India, 2018.
14. I. Cobo, M. Li, B. S. Sumerlin, and S. Perrier, Smart Hybrid Materials by Conjugation of Responsive Polymers to Biomacromolecules, Nat. Mater., 2015.
15. Hoffman A. S., Stayton P. S., Conjugates of Stimuli-responsive Polymers and Proteins, Progress in Polymer Science, 32, 922-932, 2007.
16. Cummings C., Murata H., Koepsel R., Russell A. J., Tailoring Enzyme Activity and Stability Using Polymer-based Protein Engineering, Biomaterials, 34, 7437-7443, 2013.
17. Nokoorani Y. D., Shamloo A., Bahadoran M., Moravvej H., Fabrication and Characterization of Scaffolds Containing Different Amounts of Allantoin for Skin Tissue Engineering, Scientific Reports, 11, 1-20, 2021.
18. Nair L. S., Laurencin C. T., Biodegradable Polymers as Biomaterials, Progress in Polymer Science, 32, 762-798, 2007.
19. Kim A. Y., Kim Y., Lee S. H., Yoon Y., Kim W. H., Kweon O. K., Effect of Gelatin on Osteogenic Cell Sheet Formation Using Canine Adipose-derived Mesenchymal Stem Cells, Cell Transplantation, 26, 115-123, 2017.
20. Campiglio C. E., Contessi Negrini N., Farè S., Draghi L., Cross-linking Strategies for Electrospun Gelatin Scaffolds, Materials, 12, 2476, 2019.
21. Pezeshki Modaress M., Mirzadeh H., Zandi M., Fabrication of a Porous Wall and Higher Interconnectivity Scaffold Comprising Gelatin/Chitosan Via Combination of Salt-leaching and Lyophilization Methods, Iranian Polymer Journal, 21, 191-200, 2012.
22. Huang Z. M., Zhang Y. Z., Ramakrishna S., Lim C. T., Electrospinning and Mechanical Characterization of Gelatin Nanofibers, Polymer, 45, 5361-5368, 2004.
23. Chen F. M., Liu X., Advancing Biomaterials of Human Origin for Tissue Engineering, Prog. Polym. Sci., 53, 86–168, 2016.
24. Ramanathan G., Singaravelu S., Raja M. D., Nagiah N., Padmapriya P., Ruban K., Krishnasamy.K., Natarajan. T. S., Sivagnanam. U. T., Perumal P. T., Fabrication and Characterization of a Collagen Coated Electrospun poly (3-hydroxybutyric Acid)–gelatin Nanofibrous Scaffold as a Soft Bio-mimetic Material for Skin Tissue Engineering Applications, RSC Advances, 6, 7914-7922, 2016.
25. Wang Y., Kim H. J., Vunjak-Novakovic G., Kaplan D. L., Stem Cell-based Tissue Engineering with Silk Biomaterials, Biomaterials, 27, 6064-6082, 2006.
26. Moghadas B., Dashtimoghadam E., Mirzadeh H., Seidi F., Hasani-Sadrabadi M. M., Novel Chitosan-based Nanobiohybrid membranes for Wound Dressing Applications, RSC Advances, 6, 7701-7711, 2016.
27. Gauthier M. A., Klok H. A., Peptide/protein–polymer Conjugates: synthetic Strategies and Design Concepts, Chemical Communications, 23, 2591-2611, 2008.
28. Yi L., Sun H., Wu Y. W., Triola G., Waldmann H., Goody R. S., A Highly Efficient Strategy for Modification of Proteins at the Terminus, Angewandte Chemie International Edition, 49, 9417-9421, 2010.