پایدارسازی و سنکرونسازی ریزشبکه جزیرهای با حضور خطا و حمله سایبری سنسوری و عملگری با طراحی کنترلکننده ثانویه
الموضوعات :عبدالله میرزابیگی 1 , علی کاظمی 2 , مهدی رمضانی 3 , سیدمحمد عظیمی 4
1 - دانشکده مهندسی برق، مؤسسه آموزش عالی جهاد دانشگاهی همدان
2 - دانشکده مهندسی برق، دانشگاه تفرش
3 - دانشکده ریاضی، دانشگاه تفرش
4 - دانشکده مهندسی برق، دانشگاه صنعتی همدان
الکلمات المفتاحية: ریزشبکه, خطای سنسوری و عملگری, حمله سایبری سنسوری و عملگری, سیستمهای چندعامله, کنترل سلسهمراتبی توزیعشده اشتراکی, سنکرونسازی, پایداری لیاپانوف,
ملخص المقالة :
در بسیاری از روشهای کنترلی ریزشبکه برای پایداری و سنکرونسازی ولتاژ و فرکانس از اطلاعات خروجی سنسورها و عملگرهای منابع تولید پراکنده همجوار استفاده میشود. بسیاری از مشکلات مانند اختلالات، عدم قطعیت، دینامیک مدلنشده، حملات سایبری، نویز، تأخیر و خطاهای اندازهگیری، مشکلات داده نامعتبر و خطا را در سیستم ایجاد میکند. کنترل بهتر ریزشبکه به کیفیت دادههای اندازهگیریشده و یا ارسالشده از خروجی سنسورها و عملگرها بستگی دارد. در این مقاله با توجه به مزیتهای روش کنترلی سلسلهمراتبی توزیعشده اشتراکی از آن برای کنترل و سنکرونسازی در ریزشبکه جزیرهای با حضور خطای سنسوری و عملگری استفاده میگردد. برای سنکرونسازی منابع تولید پراکنده با سیستمهای چندعامله و شبکه ارتباطی با تئوری گراف مدل میگردد. بهمنظور پایدارسازی و سنکرونسازی، خطای سنسوری و عملگری در مدل منابع تولید پراکنده فرمولبندی ریاضی میشود. در اثبات پایداری و سنکرونسازی تابع لیاپانوف مناسب ارائه شده و شرایط پایداری و سنکرونسازی اثبات میگردد. در نهایت برای نشاندادن کارایی کنترلکننده طراحی شده در حل مشکلات کانال ارتباطی و تأیید تئوری ارائه شده، یک مدل نمونه با وجود خطا و حمله سایبری سنسوری و عملگری در محیط نرمافزار متلب/ سیمولینک شبیهسازی میشود.
[1] L. Meng, et al., "Review on control of DC microgrids and multiple microgrid clusters," IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 5, no. 3, pp. 928-948, Sept. 2017.
[2] A. Bidram and A. Davoudi, "Hierarchical structure of microgrids control system," IEEE Trans. on Smart Grid, vol. 3, no. 4, pp. 1963-1976, Dec. 2012.
[3] M. Chen, X. Xiao, and J. M. Guerrero, "Secondary restoration control of islanded microgrids with a decentralized event-triggered strategy," IEEE Trans. on Industrial Informatics, vol. 14, no. 9, pp. 3870-3880, Sept. 2017.
[4] A. Mirzabeigi, A. Kazemy, M. Ramezani, and S. M. Azimi, "Distributed robust cooperative hierarchical control for island microgrids under hijacking attacks based on multi-agent systems," Hindawi International Trans. on Electrical Energy Systems, vol. 2023, Article ID 6622346, 15 pp., 2023.
[5] ع. میرزابیگی، ع. کاظمی، م. رمضانی ، و س. م. عظیمی" طراحی کنترل کننده ثانویه پایه ریزی شده بر روی کنترل اشتراکی توزیع شده منابع تولید پراکنده (DGها) با رویکرد سیستم های چندعامله با درنظرگرفتن حملات سایبری "DoS، نشریه مهندسی برق و مهندسی کامپیوتر ایران، الف- مهندسی برق، سال 20، شماره 4، صص. 290-282، زمستان 1401.
[6] H. Modares, B. Kiumarsi, F. L. Lewis, F. Ferrese, and A. Davoudi, "Resilient and robust synchronization of multiagent systems under attacks on sensors and actuators," IEEE Trans. on Cybernetics, vol. 50, no. 3, pp. 1240-1250, Mar. 2019.
[7] X. M. Zhang, Q. L. Han, X. Ge, and L. Ding, "Resilient control design based on a sampled-data model for a class of networked control systems under denial-of-service attacks," IEEE Trans. on Cybernetics, vol. 50, no. 8, pp. 3616-3626, Aug. 2019.
[8] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson, "Attack models and scenarios for networked control systems," in Proc. of the 1st Int. Conf. on High Confidence Networked Systems, HiCoNS'12, pp. 55-64, Beijing, China, 17-18 Apr. 2012.
[9] E. Mousavinejad, F. Yang, Q. L. Han, and L. Vlacic, "A novel cyber attack detection method in networked control systems," IEEE Trans. on Cybernetics, vol. 48, no. 11, pp. 3254-3264, Nov. 2018.
[10] S. Tan, P. Xie, J. M. Guerrero, and J. C. Vasquez, "False data injection cyber-attacks detection for multiple DC microgrid clusters," Applied Energy, vol. 310, Article ID: 118425, 15 Mar. 2022.
[11] B. Wang, Q. Sun, R. Han, and D. Ma, "Consensus-based secondary frequency control under denial-of-service attacks of distributed generations for microgrids," J. of the Franklin Institute, vol. 358, no. 1, pp. 114-130, Jan. 2019.
[12] M. Xie, Y. Song, and S. Shen, "Event-based consensus control for multi-agent systems against joint sensor and actuator attacks," ISA Trans., vol. 127, pp. 156-167, Aug. 2022.
[13] H. Yan, J. Han, H. Zhang, X. Zhan, and Y. Wang, "Adaptive event-triggered predictive control for finite time microgrid," IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 67, no. 3, pp. 1035-1044, Mar. 2020.
[14] M. Shi, X. Chen, M. Shahidehpour, Q. Zhou, and J. Wen, "Observer-based resilient integrated distributed control against cyberattacks on sensors and actuators in islanded AC microgrids," IEEE Trans. on Smart Grid, vol. 12, no. 3, pp. 1953-1963, May 2021.
[15] X. Lu, X. Yu, J. Lai, J. M. Guerrero, and H. Zhou, "Distributed secondary voltage and frequency control for islanded microgrids with uncertain communication links," IEEE Trans. on Industrial Informatics, vol. 13, no. 2, pp. 448-460, Apr. 2016.
[16] J. Lai, H. Zhou, X. Lu, X. Yu, and W. Hu, "Droop-based distributed cooperative control for microgrids with time-varying delays," IEEE Trans. on Smart Grid, vol. 7, no. 4, pp. 1775-1789, Jul. 2016.
[17] H. Xin, Z. Qu, J. Seuss, and A. Maknouninejad, "A self-organizing strategy for power flow control of photovoltaic generators in a distribution network," IEEE Trans. on Power Systems, vol. 26, no. 3, pp. 1462-1473, Aug. 2010.
[18] S. Abhinav, I. D. Schizas, F. L. Lewis, and A. Davoudi, "Distributed noise-resilient networked synchrony of active distribution systems," IEEE Trans. on Smart Grid, vol. 9, no. 2, pp. 836-846, Mar. 2016.
[19] D. Ye, X. Zhao, and B. Cao, "Distributed adaptive fault‐tolerant consensus tracking of multi‐agent systems against time‐varying actuator faults," IET Control Theory & Applications, vol. 10, no. 5, pp. 554-563, Mar. 2016.
[20] Y. Wang, Y. Song, and F. L. Lewis, "Robust adaptive fault-tolerant control of multiagent systems with uncertain nonidentical dynamics and undetectable actuation failures," IEEE Trans. on Industrial Electronics, vol. 62, no. 6, pp. 3978-3988, Jun. 2015.
[21] S. Zuo, T. Altun, F. L. Lewis, and A. Davoudi, "Distributed resilient secondary control of DC microgrids against unbounded attacks," IEEE Trans. on Smart Grid, vol. 11, no. 5, pp. 3850-3859, Sept. 2020.
[22] B. Wang, Q. Sun, and D. Ma, "A periodic event-triggering reactive power sharing control in an islanded microgrid considering DoS attacks," in Proc. 15th IEEE Conf. on Industrial Electronics and Applications, ICIEA'20, pp. 170-175, Kristiansand, Norway, 9-13 Nov. 2020.
[23] R. Lu and J. Wang, "Distributed control for AC microgrids with false data injection attacks and time delays," in Proc. E3S Web of Conf., vol. 194, Article ID: 03023, 2020.
[24] N. M. Dehkordi and S. Z. Moussavi, "Distributed resilient adaptive control of islanded microgrids under sensor/actuator faults," IEEE Trans. on Smart Grid, vol. 11, no. 3, pp. 2699-2708, May 2019.
[25] Z. Xie and Z. Wu, "Distributed fault-tolerant secondary control for DC microgrids against false data injection attacks," International J. of Electrical Power & Energy Systems, vol. 144, Article ID: 108599, Jan. 2023.
[26] A. Karimi, A. Ahmadi, Z. Shahbazi, H. Bevrani, and Q. Shafiee, "On the impact of cyber-attacks on distributed secondary control of DC microgrids," in Proc. 10th Smart Grid Conf., SGC'2020, 6 pp., Kashan, Iran, 16-17 Dec. 2020.
[27] X. Chen, J. Zhou, M. Shi, Y. Chen, and J. Wen, "Distributed resilient control against denial of service attacks in DC microgrids with constant power load," Renewable and Sustainable Energy Reviews, vol. 153, Article ID: 111792, Jan. 2022.
[28] N. Pogaku, M. Prodanovic, and T. C. Green, "Modeling, analysis and testing of autonomous operation of an inverter-based microgrid," IEEE Trans. on Power Electronics, vol. 22, no. 2, pp. 613-625, Mar. 2007.
[29] Q. Shafiee, J. M. Guerrero, and J. C. Vasquez, "Distributed secondary control for islanded microgrids-a novel approach," IEEE Trans. on Power Electronics, vol. 29, no. 2, pp. 1018-1031, Feb. 2013.
[30] A. Bidram, A. Davoudi, F. L. Lewis, and Z. Qu, "Secondary control of microgrids based on distributed cooperative control of multi-agent systems," IET Generation, Transmission & Distribution, vol. 7, no. 8, pp. 822-831, Aug. 2013.
[31] A. Bidram, A. Davoudi, F. L. Lewis, and J. M. Guerrero, "Distributed cooperative secondary control of microgrids using feedback linearization," IEEE Trans. on Power Systems, vol. 28, no. 3, pp. 3462-3470, Aug. 2013.
[32] J. W. Simpson-Porco, et al., "Secondary frequency and voltage control of islanded microgrids via distributed averaging," IEEE Trans. on Industrial Electronics, vol. 62, no. 11, pp. 7025-7038, Nov. 2015.
[33] F. Guo, C. Wen, J. Mao, J. Chen, and Y. D. Song, "Distributed cooperative secondary control for voltage unbalance compensation in an islanded microgrid," IEEE Trans. on Industrial Informatics, vol. 11, no. 5, pp. 1078-1088, Oct. 2015.
[34] H. Cai, F. L. Lewis, G. Hu, and J. Huang, "The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems," Automatica, vol. 75, pp. 299-305, Jan. 2017.
[35] F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative Control of Multi-Agent Systems Optimal and Adaptive Design Approaches, SpringerLink, 2014.
[36] A. Mustafa, H. Modares, and R. Moghadam, "Resilient synchronization of distributed multi-agent systems under attacks," Automatica, vol. 115, Article ID: 108869, May 2020.
[37] A. Bidram, F. L. Lewis, and A. Davoudi, "Distributed control systems for small-scale power networks: using multiagent cooperative control theory," IEEE Control Systems Magazine, vol. 34, no. 6, pp. 56-77, Dec. 2014.
[38] F. D. Mohammadi, H. K. Vanashi, and A. Feliachi, "State-space modeling, analysis, and distributed secondary frequency control of isolated microgrids," IEEE Trans. on Energy Conversion, vol. 33, no. 1, pp. 155-165, Mar. 2017.
[39] D. Ding, Q. L. Han, Y. Xiang, X. Ge, and X. M. Zhang, "A survey on security control and attack detection for industrial cyber-physical systems," Neurocomputing, vol. 275, pp. 1674-1683, 31 Jan. 2018.
[40] A. Kazemy, J. Lam, and Z. Chang, "Adaptive event-triggered mechanism for networked control systems under deception attacks with uncertain occurring probability," International J. of Systems Science, vol. 2020, pp. 1426-1439, 2020.
[41] C. Chen, et al., "Resilient adaptive and H∞ controls of multi-agent systems under sensor and actuator faults," Automatica, vol. 102, pp. 19-26, Apr. 2019.
[42] H. Zhang, F. L. Lewis, and A. Das, "Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback," IEEE Trans. on Automatic Control, vol. 56, no. 8, pp. 1948-1952, Aug. 2011.