الگوریتم مناسب برای شناسایی تغییرات میکرو لندفرمها با استفاده از تصاویر پهپاد (مطالعه موردی: ناحیه برگ جهان در پهنه جاجرود 1397-1396)
الموضوعات :محمدحسن توکل 1 , منیژه قهرودی تالی 2 , سید حسن صدق 3 , خدیجه علی نوری 4
1 - دانشگاه شهید بهشتی
2 - دانشگاه شهید بهشتی
3 - دانشگاه شهید بهشتی
4 - دانشگاه شهید بهشتی
الکلمات المفتاحية: الگوریتم یادگیری عمیق, جنگل تصادفی, میکرولندفرم, SVM , RBF,
ملخص المقالة :
یکی از اصلیترین و مهمترین مباحث ژئومورفولوژی شناسایی و ارزیابی تغییرات میکرولندفرمهاست. شناخت و نحوه پراکنش فضایی آنها بهمنظور درک و ارزیابی تحولات، مطالعات پایداری و برنامهریزی ناحیهای، از نیازهای اساسی علم ژئومورفولوژی کاربردی است. ناحیه برگ جهان در حوضه آبریز جاجرود متأثر از تغییرات محیطی زیادی قرار دارد. در این مطالعه، بر اساس رویکرد ژئومورفولوژیکی ریزمقیاس با استفاده از تصاویر پهپاد به همراه بررسی میدانی در برگ جهان، تحولات میکرولندفرمها بررسی شد. تصاویر پهپاد با رزولوشن مکانی 5/2 سانتیمتر در بازه زمانی 1396 تا 1397 از وزارت نیرو تهیه شد. این تصاویر با استفاده از نرمافزارهای ENVI 5.1 و10.3 Arc Map تصحیح شد و سپس با استفاده کد نویسی در Python الگوریتمهای موردنظر اجرا شد. با الگوریتمهای یادگیری ماشین و مدلهای جنگل تصادفی، SVM با کرنل RBF، جنگل تصادفی با ویژگیهای استخراجی از شبکههای CNN و SVM با کرنل خطی با ویژگیهای استخراجی از شبکههای عصبی عمیق تغییرات بررسی شد. نتایج نشان داد مدل- RBF SVM با 88درصد نسبت به مدلهای دیگر دقت کمتری دارد بهطوریکه تفکیک بین طبقهها محدود بود. در جنگل تصادفی با 92درصد طبقهها با مرزهای خطی تا حدی قابلتفکیک بودند. مدل نزدیک به ایده آل در الگوریتم جنگل تصادفی با یادگیری عمیق به میزان دقت 96درصد مشاهده شد. بررسیها نشان داد بیشترین تغییرات میکرولندفرمها در این مدل، مربوط به تغییر پوشش گیاهی به خاک به میزان 03/45 و در رتبه بعدی تغییر آبکند به فرسایش ورقهای به میزان 05/22 بود. با توجه به نتایج بهدستآمده و مشاهدات میدانی در سال 1397 مشخص شد، سیل سال 1397 در ناحیه برگ جهان سبب تغییرات عمدهای در ناحیه شده است. بیشترین تأثیر آن بر روی پوشش گیاهی بوده است و نمودار، آن را در بالاترین حد آشفتگی نشان میدهد. در این بازه جریان سطحی وخندق در ناحیه بیشتر شده و میزان بالای فرسایش و تغییرات بسیار زیاد میکرولندفرمها در پهنه مطالعاتی را نشان میدهد.
آراء، ه.، 1392. لندفرمها و طبقهبندی آنها در علم ژئومورفولوژی (مطالعه موردی: حوضه آبریز جاجرود در شمال شرق تهران). فصلنامه علمی-پژوهشی اطلاعات جغرافیایی سپهر، 22 (86)، 17-22.
چورلی، ر، ج.، استانلی، ا.ش. و دیوید، ا، 1375. ژئومورفولوژي. ترجمه احمد، معتمد (جلد اول) تهران،انتشارات سمت، 168.
خدري غريب وند، ل.، قهرودي تالي، م.، سبك خيز، ف. و سپهر، ع.، 1397. بررسي روند تكاملي پهنههای گلي باتلاق گاوخوني با استفاده از مدل فركتال. جغرافيا و برنامهریزی محيطي، 29 (2)، 113-128. 10.22108/gep.2018.98241.0.
رعیتی شوازی، م.، کرم، ا.، غفاریان مالمیری، ح، م. و سپهر، ع.، 1396. مقایسه کارایی برخی الگوریتمهای طبقهبندی در مطالعه تغییرات لندفرمهای بیابانی دشت یزد – اردکان. پژوهشهای ژئومورفولوژی کمی، 1 (21)، 73-57.
شایان، س.، احمدآبادی، ع.، یمانی، م.، فرج زاده اصل، م. و احسان الله کبیر، م.، 1391. ارزیابی شاخصهای ژئومورفومتریک به روش وود در طبقهبندی لندفرمهای مناطق خشک (مطالعه موردی: منطقه مرنجاب). برنامهریزی و آمایش فضا، 16 (1)، ۱۰۵-۱۲۰.
قهرودي تالي، م. و علي نوري، خ.، 1396. تغييرات مكاني پلاياي حوض سلطان در دوره 2016-1991، پژوهشهاي ژئومورفولوژي كمي، 20 (4)، 103-120.
قهرودي تالي، م. و علي نوري، خ.، 1393. ردیابی مخاطرات پلایای حوض سلطان با بررسی آشفتگی میکرولندفرمها.، مدیریت مخاطرات محیطی، 1 (2)، 241-252.
قهرودي تالي، م .و خدري غريب وند، ل.، 1395. رویکرد فرمشناسی در استراتژی مدیریت تالابها و پلایاها بررسی موردی: پلایای گاوخونی. فصلنامه علوم محیطی، 14 (2)،118-109.
مکرم، م. و نگهبان، س.، 1394. طبقهبندی لندفرمها با استفاده از شبکههای عصبی خود سازنده (Selforganization map). فصلنامه کواترنری ایران، 1 (3)، 225-238.
نعیمی نظامآباد، ع.، قهرودی تالی، م. و ثروتی، م، ر.، 1388. آشکارسازی تغییرات لندفرمهای ساحلی منطقه عسلویه. جغرافیایی سرزمین، 22 (2)، 59-65.
Baartman, J. E., Temme, A. J. and Saco, P. M., 2018. The effect of landform variation on vegetation patterning and related sediment dynamics. Earth Surface Processes and Landforms, 43(10), 2121-2135.
Bernal, I., Tavera, H., Sulla, W., Arredondo, L. and Oyola, J., 2018. Geomorphology Characterization of Ica Basin and Its Influence on the Dynamic Response of Soils for Urban Seismic Hazards in Ica, Peru, International Journal of Geophysics.43-59
Bocco, G., Mendoza, M. and Velazquez, A., 2001. Remote sensing and GIS-based regional geomorphological mapping a tool for land use planning in developing countries. Geomorphology, 39(3-4), 211-219.
Cassandra, A.P. B. and Crider, G. J., 2022. A new metric for morphologic variability using landform shape classification via supervised machine learning, Geomorphology, 399(108065), doi.org/10.1016/j.geomorph.2021.108065.
Chakrabortty, R., Pal, S. C., Santosh, M., Roy, P. and Chowdhuri, I., 2022. Gully erosion and climate induced chemical weathering for vulnerability assessment in sub-tropical environment. Geomorphology, 398,108027, doi:10.1016/j.geomorph.2021.108027.
Debnath, J., Pan, N. D., Ahmed, I. and Bhowmik, M., 2017. Channel migration and its impact on land use/land cover using RS and GIS: A study on Khowai River of Tripura, North-East India, The Egyptian Journal of Remote Sensing and Space Science, 20(2), 197-210.
James, M. and Robson, Stuart, 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application, Journal of Geophysical Research, 117, F03017, doi:10.1029/2011JF002289.
Laurentiis, D.L., Pomente, A., Del, F. F. and Schiavon, G., 2019. Capsule and convolutional neural network-based SAR ship classification in Sentinel-1 data, 11154, 1115405, doi:10.1117/12.2532551.
Liu, B. and Coulthard, T., 2017. In Dynamic Equilibrium: The Autogenic Landform Change in a Fluvial-Aeolian Interacting Field. In Fifth International Planetary Dunes, 1961, 3001.
Panda, P. and Narasimham, M., 2018. Dynamic Geomorphology of the Kosi Fan in Consequence to a Mega-Avulsion Aided by Space Inputs and Hydraulic Modeling, J Remote Sensing and GIS, 7, 1000238, doi: 10.4172/2469-4134.1000238.
Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R. and Feizizadeh, B., 2017. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion, Geomorphology, 298, 118-137.
Salles, T., Flament, N. and Muller, D., 2017. Influence of dynamic topography on the evolution of the eastern Australian landscape since the Upper Jurassic Epoch, In EGU General Assembly Conference Abstracts, 11432.
Sawagaki, T., LAMSAL, D., Byers, A. and Watanabe, T., 2012. Changes in surface morphology and glacial lake development of Chamlang South Glacier in the eastern Nepal Himalaya since 1964, Global Environmental Research, 16, 83-94.
Spencer,T., Larissa, N.,Stuart, L.,Stephen, D.,Mark, M.,Francis, M. and Iris., M., 2017. Stormy geomorphology: an introduction to the Special Issue, Earth Surface Processes and Landforms, 42, 238–241, doi: 10.1002/esp.4065.
Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Wei, Z., Han, Y., Li, M., Yang, K., Yang, Y., Luo, Y. and Ong, S. H., 2017. A small UAV based multi-temporal image registration for dynamic agricultural terrace monitoring, Remote Sensing, 9(9), 904.
Wondzell, S. M., Cunningham, G. L. and Bachelet, D., 1996. Relationships between landforms, geomorphic processes, and plant communities on a watershed in the northern Chihuahuan Desert, Landscape Ecology, 11(6), 351-362.