الگوریتم هوشمند پیشبینی ناپایداری گذرای ناحیه گسترده زاویه روتور مبتنی بر تئوری درخت تصمیم 0. 5C و سیگنالهای سراسری
الموضوعات :
1 - دانشكده فنی و مهندسی، دانشگاه ولایت
الکلمات المفتاحية: پایداری گذرا, خروج از همگامی, آشکارسازی, درخت تصمیم,
ملخص المقالة :
در این مقاله، طرح حفاظتی هوشمند بهمنظور پیشبینی برخط ناپایداری گذرای ناحیه گسترده در سیستمهای قدرت بر اساس تئوری درخت تصمیم معرفی میشود. برای این منظور با بررسی نوسان توان شبکه و شرایط معادلات دینامیک ژنراتور سنکرون در دو حالت پایدار و شرایط خروج از همگامی، شاخصهای برخط مبتنی بر واحدهای اندازهگیری فازوری معرفی و تحت شرایط متفاوت بهرهبرداری و توپولوژیکی شبکه در زمانهای وقوع خطا و برطرفشدن خطا بهمنظور عملکرد سریع طرح پیشنهادی اندازهگیری میشوند. در ادامه، شاخصهای پیشنهادی بهصورت جفتداده ورودی- خروجی برای آموزش درخت تصمیم در محیط برونخط مورد استفاده قرار میگیرند. نمونههای آموزشی شامل یک سری اندازهگیریها تحت خطاهای متفاوت شامل نوع و مکان خطا هستند. توانایی حفاظتی طرح پیشنهادی بر روی یک شبکه 39باسه با پتانسیل ناپایداری گذرای ناحیه گسترده ژنراتورهای سنکرون، پیادهسازی و عملکرد درخت تصمیم تحت سناریوهای از پیش آموزش دادهنشده صحتسنجی میشود. نتایج شبیهسازی نشاندهنده توانایی طرح پیشنهادی درخت تصمیم در زمینه پیشبینی صحیح خروج از همگامی ناحیه گسترده سیستم قدرت تحت طیف وسیعی از شرایط دینامبک شبکه است.
[1] S. Ranjbar, "Online estimation of controlled islanding time intervals using dynamic state trajectories through cascading failures from WAMS data," Electric Power Systems Research, pt A, vol. 214, Article ID: 108890, Jan. 2023.
[2] J. Qi, Q. Wu, Y. Zhang, G. Weng, and D. Zhou, "Unified residue method for design of compact wide-area damping controller based on power system stabilizer," J. of Modern Power Systems and Clean Energy, vol. 8, no. 2, pp. 367-376, Mar. 2020.
[3] Q. Mou, H. Ye, and Y. Liu, "Nonsmooth optimization-based WADC tuning in large delayed cyber-physical power system by interarea mode tracking and gradient sampling," IEEE Trans. on Power Systems, vol. 34, no. 1, pp. 668-679, Jan. 2019.
[4] M. J. Alinezhad, M. Radmehr, and S. Ranjbar, "Adaptive wide area damping controller for damping inter-area oscillations considering high penetration of wind farms," International Trans. on Electrical Energy Systems, vol. 30, no. 3, pp. 622-633, Mar. 2020.
[5] S. Ranjbar, "Adaptive criteria of estimating power system separation times based on inter‐area signal," IET Generation, Transmission & Distribution, vol. 17, no. 3, pp. 573-588, Feb. 2023.
[6] M. Bento, "Fixed wide-area damping controller considering time delays and power system operation uncertainties," IEEE Trans. on Power Systems, vol. 35, no. 5, pp. 3918-3926, Sep. 2020.
[7] A. Thakallapelli and S. Kamalasadan, "Wide-area damping of inter-area oscillations based on MIMO identification," IET Generation, Transmission & Distribution, vol. 14, no. 13, pp. 2464-2475, Aug. 2020.
[8] J. L. Rodríguez-Amenedo and S. A. Gómez, "Damping low-frequency oscillations in power systems using grid-forming converters," IEEE Access, vol. 9, pp. 158984-158997, 2021.
[9] Y. Zhou, J. Liu, Y. Li, C. Gan, H. Li, and Y. Liu, "A gain scheduling wide-area damping controller for the efficient integration of photovoltaic plant," IEEE Trans. on Power Systems, vol. 34, no. 3, pp. 1703-1715, May 2019.
[10] I. Zenelis, X. Wang, and I. Kamwa, "Online PMU-based wide-area damping control for multiple inter-area modes," IEEE Trans. on Smart Grid, vol. 11, no. 6, pp. 5451-5461, Nov. 2020.
[11] Y. Shen, W. Yao, J. Wen, and L. Jiang, "Resilient wide-area damping control using GrHDP to tolerate communication failures," IEEE Trans. on Smart Grid, vol. 10, no. 3, pp. 2547-2557, May 2019.
[12] N. R. Naguru and V. Sarkar, "Practical supplementary controller design for the bi-layer WAC architecture through structurally constrained H2 norm optimisation," IET Generation, Transmission & Distribution, vol. 13, no. 7, pp. 1095-1103, Mar. 2019.
[13] L. Simon, K. S. Swarup, and J. Ravishankar, "Wide area oscillation damping controller for DFIG using WAMS with delay compensation," IET Renewable Power Generation, vol. 13, no. 1, pp. 128-137, Apr. 2019.
[14] F. Wilches-Bernal, R. H. Byrne, and J. Lian, "Damping of inter-area oscillations via modulation of aggregated loads," IEEE Trans. on Power Systems, vol. 35, no. 3, pp. 2024-2036, May 2020.
[15] X. Shi, Y. Cao, M. Shahidehpour, Y. Li, X. Wu, and Z. Li, "Data-driven wide-area model-free adaptive damping control with communication delays for wind farm," IEEE Trans. on Smart Grid, vol. 11, no. 6, pp. 5062-5071, Nov. 2020.
[16] T. Surinkaew, R. Shah, M. Nadarajah, and S. M. Muyeen, "Forced oscillation damping controller for an interconnected power system," IET Generation, Transmission & Distribution, vol. 14, no. 2, pp. 339-347, 2020.
[17] N. Naguru and Y. Ganapavarapu, "Design of a limited state feedback wide-area power system damping controller without communication channels," IEEE Access, vol. 8, pp. 160931-160946, 2020.
[18] G. N. Baltas, N. B. Lai, L. Marin, A. Tarrasó, and P. Rodriguez, "Grid-forming power converters tuned through artificial intelligence to damp subsynchronous interactions in electrical grids," IEEE Access, vol. 8, pp. 93369-93379, 2020.
[19] S. Ranjbar, M. R. Aghamohammadi, and F. Haghjoo, "A new scheme of WADC for damping inter-area oscillation based on CART technique and thevenine impedance," International J. of Electrical Power and Energy Systems, vol. 94, pp. 339-353, Jan. 2018.
[20] M. Sarkar, B. Subudhi, and S. Ghosh, "Unified smith predictor-based H∞ wide-area damping controller to improve the control resiliency to communication failure," IEEE/CAA J. of Automatica Sinica, vol. 7, no. 2, pp. 584-596, Mar. 2020.
[21] J. A. Oscullo and C. F. Gallardo, "Residue method evaluation for the location of PSS with sliding mode control and fuzzy for power electromechanical oscillation damping control," IEEE Latin America Trans., vol. 18, no. 1, pp. 24-31, Jan. 2020.