الگوریتم کاهش انرژی مصرفی پویا برای سیستمهای بیدرنگ بحرانی-مختلط با پردازندههای چندهستهای
الموضوعات :
1 - گروه کامپیوتر و فناوری اطلاعات، دانشگاه پیام نور، ایران
الکلمات المفتاحية: سیستمهای تعبیهشده بحرانی- مختلط, پردازندههای چندهستهای, انرژی مصرفی, تغییر پویای ولتاژ و فرکانس,
ملخص المقالة :
امروزه برخلاف سیستمهای تعبیهشده سنتی که دارای وظایف با درجه اهمیت یکسان هستند، بسیاری از سیستمهای تعبیهشده، بحرانی- مختلط میباشند و بیشتر مورد استفاده قرار میگیرند. سیستمهای بحرانی- مختلط، سیستمهای تعبیهشده بیدرنگی هستند که برای تجمیع برنامههای ایمنی- بحرانی و ایمنی- غیربحرانی بر روی یک بستر مشترک سختافزاری معرفی شدهاند. پردازندههای چندهستهای، قابلیت تجمیع کاربردهای متفاوت بر روی یک سختافزار را فراهم کرده و میتوانند انتخاب مناسبی برای سیستمهای تعبیهشده بحرانی- مختلط باشند. با این حال، کاهش انرژی مصرفی در این سیستمها بهدلیل حجم بالای پردازش و طراحی عموماً مبتنی بر باتری آنها یک نیاز ضروری است؛ بنابراین در این مقاله، یک روش زمانبندی ابتکاری بهمنظور کاهش انرژی مصرفی در سیستمهای بحرانی- مختلط متشکل از پردازنده چندهستهای معرفی میشود. این الگوریتم ضمن تضمین اجرای بهموقع وظایف بحرانی، انرژی مصرفی سیستم را با تغییر پویای ولتاژ و فرکانس (DVFS) کاهش خواهد داد. نتایج بهدستآمده از شبیهسازیها نشان ميدهند که انرژي مصرفي الگوریتم پیشنهادی در مقايسه با روشهاي مشابه تا 30% بهبود مييابد.
[1] س. ح. صادقزاده و ی. صداقت، "زمانبندی آگاه از انرژی مصرفی برای سیستمهای بیدرنگ تکپردازندهای بحرانی- مختلط،" نشریه علمی- پژوهشی نشريه مهندسي برق و مهندسي كامپيوتر ايران، سال 16، شماره 4، صص. 334-327، زمستان 1397.
[2] D. Zhu, "Reliability-aware dynamic energy management in dependable embedded real-time systems," ACM TECS, vol. 10, no. 2, Article ID: 26, 27 pp., Dec. 2011.
[3] P. Marwedel, Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems, Berlin, Germany: Springer, 2010.
[4] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications, Springer Science & Business Media, 2011.
[5] S. Baruah, et al., "Scheduling real-time mixed-criticality jobs," IEEE Trans. on Computers, vol. 61, no. 8, pp. 1140-1152, Aug. 2012.
[6] F. Santy, L. George, P. Thierry, and J. Goossens, "Relaxing mixedcriticality scheduling strictness for task sets scheduled with FP," in Proc. Euromicro Conf. on Real-Time Systems, ECRTS’12, pp. 155-165, Pisa, Italy, 11-13 Jul. 2012.
[7] S. Baruah, et al., "The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems," in Proc. Euromicro Conf. on Real-Time Systems, ECRTS'12, pp. 145-154, Pisa, Italy, 11-13 Jul. 2012.
[8] P. Taeju and K. Soontae, "Dynamic scheduling algorithm and its schedulability analysis for certifiable dual-criticality systems," in Proc. Int. Conf. Embedded Software, EMSOFT'11, pp. 253-262, Taipei Taiwan, 9-14 Oct. 2011.
[9] S. Baruah, H. Li, and L. Stougie, "Towards the design of certifiable mixed-criticality systems," in Proc. 16th IEEE Real-Time and Embedded Technology and Applications Symp., pp. 13-22, Stockholm, Sweden, 12-15 Apr. 2010.
[10] P. Huang, H. Yang, and L. Thiele, "On the scheduling of fault-tolerant mixed-criticality systems," in Proc. Design Automation Conf. (DAC), ACM/EDAC/IEEE, DAC'14, 6 pp., 1-5 Jun. 2014.
[11] S. Baruah and S. Vestal, "Schedulability analysis of sporadic tasks with multiple criticality specifications," in Proc. Euromicro Conf. on Real-Time Systems, ECRTS'08, pp. 147-155, Prague, Czech Republic, 2-4 Jul. 2008.
[12] Z. Lia, C. Guo, X. Hua, and S. Ren, "Reliability guaranteed energy minimization on mixed-criticality systems," J. of Syst. and Software, vol. 112, pp. 1-10, Feb. 2016.
[13] H. Su, D. Zhu, and S. Brandt, "An elastic mixed-criticality task model and early-release EDF scheduling algorithms," ACM TODAES, vol. 22, no. 2, Article ID: 28, 28 pp., Apr. 2017.
[14] A. Thekkilakattil, R. Dobrin, and S. Punnekkat, "Fault-tolerant scheduling of mixed-criticality real-time tasks under error bursts," Procedia Computer Science, vol. 46, pp. 1148-1155, 2015.
[15] P. Ekberg and W. Yi, "Bounding and shaping the demand of mixed-criticality sporadic tasks," in Proc. 24th Euromicro Conference on Real-Time Systems, ECRTS, pp. 135-144, Pisa, Italy, 11-13 Jul. 2012.
[16] S. Vestal, "Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance," in Proc. 28th IEEE Int. Real-Time Systems Symp., pp. 239-243, Tucson, AZ, USA, 3-6 Dec. 2007.
[17] J. Lin, A. M. K. Cheng, D. Steel, and M. Yu-Chi Wu, "Scheduling mixed-criticality real-time tasks in a fault-tolerant system," International Journal of Embedded and Real-Time Communication Systems, vol. 6, no. 2, 22 pp., 2015.
[18] C. Kamienski, et al., "Application development for the Internet of Things: a context-aware mixed criticality systems development platform," Computer Communications, vol. 104, pp. 1-16, 15 May 2017.
[19] A. Taherin, M. Salehi, and A. Ejlali, "Reliability-aware energy management in mixed-criticality systems," IEEE Trans. on Sustainable Computing, vol. 3, no. 3, pp. 195-208, Jul.-Sept. 2018.
[20] M. Salehi, A. Ejlali, and B. M. Al-Hashimi, "Two-phase low-energy N-modular redundancy for hard real-time multi-core systems," IEEE TPDS, vol. 27, no. 5, pp. 1497-1510, May 2015.
[21] S. Baruah, C. Bipasa, L. Haohan, and S. Insik, "Mixed-criticality scheduling on multiprocessors," Real-Time Systems, vol. 50, no. 1, pp. 142-177, Jan. 2014.
[22] C. Gu, G. Nan, D. Qingxu, and Y. Wang, "Partitioned mixed-criticality scheduling on multiprocessor platforms," in Proc. Design, Automation & Test in Europe Conf. & Exhibition, DATE'14, 6 pp., Dresden, Germany, 24-28 Mar. 2014.
[23] Y. Zhang and K. Chakrabarty, "Dynamic adaptation for fault tolerance and power management in embedded real-time systems," ACM Trans. on Embedded Computing Systems, vol. 3, no. 2, pp. 336-360, May 2004.
[24] L. Benini, A. Bogliolo, and G. De Micheli, "A survey of design techniques for system-level dynamic power management," IEEE Trans. VLSI Sys., vol. 8, no. 3, pp. 299-316, Jun. 2000.
[25] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, "A dynamic voltage scaled microprocessor system," IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1571-1580, Nov. 2000.
[26] M. A. Haque, H. Aydin, and D. Zhu, "On reliability management of energy-aware real-time systems through task replication," IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 813-825, Mar. 2017.
[27] Y. Zhang and R.Chen, "A survey of energy-aware scheduling in mixed-criticality systems," Journal of Systems Architecture, vol.1, no.17, Article ID: 102524, Jun. 2022.
[28] J. Chen and C. Kuo, "Energy-efficient scheduling for realtime systems on dynamic voltage scaling (dvs) platforms," in Proc. Embedded and Real-Time Computing Systems and Applications, RTCSA'07, pp. 28-38, Daegu, South Korea, 21-24 Aug. 2007.
[29] A. Burns and R. I. Davis, Mixed-Criticality Systems: A Review, Tech. Rep., Dept. Comput. Sci. Univ. York, 61 pp. 1-61, 2016.
[30] S. Narayana, P. Huang, G. Giannopoulou, L. Thiele, and R. V. Prasad, "Exploring energy saving for mixed-criticality systems on multi-cores," in Proc. IEEE Real-Time and Embedded Technology and Applications Symp., RTAS'16, 12 pp., Vienna, Austria, 11-14 Apr. 2016.
[31] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, "Energy efficient DVFS scheduling for mixed-criticality systems," in Proc. Int. Conf. Embedded Software, EMSOFT'14, 10 pp., Uttar Pradesh, India, 12-17 Oct. 2014.
[32] V. Moghaddas, M. Fazeli, and A. Patooghy, "Reliability-oriented scheduling for static-priority real-time tasks in standby-sparing systems," Microprocessors and Microsystems, Pt A, vol. 45, pp. 208-215, Aug. 2016.
[33] V. Legout, M. Jan, and L. Pautet, "Mixed-criticality multiprocessor real-time systems: energy consumption vs deadline misses," in Proc. 1st. Workshop on Real-Time Mixed Criticality Syst., ReTiMiCS'13', 6 pp., Taipei, Taiwan. Aug. 2013.
[34] M. Völp, M. Hähnel, and A. Lackorzynski, "Has energy surpassed timeliness? scheduling energy-constrained mixed-criticality systems," in Proc. IEEE Real-Time and Embedded Technology and Applications Symp., RTAS'14, pp. 275-284, Berlin, Germany, 15-17 Apr. 2014.
[35] F. Zhang and A. Burns, "Schedulability analysis for real-time systems with EDF scheduling," IEEE Trans. on Computers, vol. 589, no. 9, pp. 1250-1258, Sept. 2009.
[36] N. Audsley, Optimal Priority Assignment and Feasibility of Static Priority Tasks with Arbitrary Start Times, Dept. of Comp. Sci., University of York, UK, 1991.
[37] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, "Mapping on multi/many-core systems: Survey of current and emerging trends," in Proc. of 50th ACM/EDAC/IEEE Design Automation Conf., DAC'13, pp. 275-284, Austin, TX, USA, 29 May-7 Jun. 2013.
[38] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, "An emperical comparison of global, partitioned and clustered multiprocessor EDF mchedulers," in Proc. 31st IEEE Real-Time Systems Symp., RTSS'10, San Diego, CA, USA, 30 Nov.-3 Dec. 2010.