چیدمان فضایی در طراحی معماری ساختمان¬های مسکونی میان¬مرتبه با استفاده از الگوریتم بهینه یابی
الموضوعات :صهبا حسیبی 1 , علی اندجی گرمارودی 2
1 - گروه معماری، واحد تهران جنوب، دانشکده هنر و معماری، دانشگاه آزاد اسلامی، تهران، ایران.
2 - گروه معماری، واحد تهران جنوب، دانشکده هنر و معماری، دانشگاه آزاد اسلامی، استادیار موسسه آموزش عالی هنر پارس، تهران، ایران. (نویسنده مسئول)
الکلمات المفتاحية: چیدمان فضا, طراحی معماری, مسکونی میان مرتبه, شخصی¬سازی, روش الگوریتمیک, الگوریتم بهینه¬یابی,
ملخص المقالة :
نحوه ی چیدمان فضایی و هندسی نقشه ها به عنوان یکی از اولین مراحل در طراحی معماری می باشد که تحت تاثیر متغیرهای پیدا و پنهان شکل می گیرد و سبب ایجاد جواب های متعددی می گردد. استفاده از قدرت محاسباتی کامپیوترها برای کمک در پیش بینی انواع چیدمان فضایی و چگونگی تعریف مسئله به زبان الگوریتمیک3 یکی از چالش های اصلی این موضوع می باشد. هدف پژوهش حاضر این است که به منظور شکل گیری پیوند میان ساکن و مسکن و فراهم کردن زمینة مشارکت کاربر در طراحی مسکن، الگوریتمی جهت یافتن چیدمانی فضایی متناسب با نیاز و سلیقه او ارائه شود. در پژوهش پیش رو از روش بهینه سازی چند معیاره به دنبال یافتن چیدمانی بر اساس چند معیار مختلف استفاده کرده ایم. برای این امر حدود 200 پلان جانمایی که به صورت دستی طراحی شده به عنوان ورودی به الگوریتم داده شده است؛ الگوریتم با استفاده از معیار هایی چون: مساحت فضای باز و بسته، الزامات جهت گیری فضاها، تعداد اتاق های خواب و ... اساس کار جانمایی را شکل می دهد. در ادامه انواع حالات ممکن قرارگیری فضاها در کنار هم بررسی می شود و با توجه به داده ها بهترین حالت چیدمان فضایی پیشنهاد می گردد. در پایان کل فرآیند ترکیبی الگوریتم به وسیله تعدادی نمونه مورد آزمایش قرار گرفته است که نتایج حاصل گویای ظرفیت بالای روش پیشنهادی در تهیه، تنوع، سرعت و دقت تولید نقشه های چیدمان فضایی ساختمان های مسکونی میان مرتبه به دور از محدودیت های ذهن انسان می باشد.
1. رحمتی¬گواری، ر.، قدوسی¬فر، ه.، طاهباز، م.، و زارع میرک آباد، ف. (1399). بررسی رویکردها الگوریتمیک در چیدمان فضایی. معماری و شهر¬سازی آرمانشهر، 32، 111-99.
2. رهبر، م.، مهدوی نژاد، م. ج.، بمانیان، م.، و دوائی مرکزی، ا. (1399). الگوریتم سی گن در تولید نقشه حرارتی جانمایی فضایی در طراحی معماری. معماری و شهر¬سازی آرمانشهر، 32، 142-131.
3. عزیزی قهرودی، م.، و رضایی، م. (1400). تحلیل پارامتریک سایت پلان مبتنی بر روش ماتریس ارزیابی تأثیرات محیطی (مطالعه موردی: مجموعه آرامگاه شمس تبریزی). پژوهش¬های معماری نوین، 1(1)، 70-55.
4. گلابچی، م.، اندجی، ع.، و باستانی، ح. (1391). معماری دیجیتال. چاپ دوم، تهران، انتشارات دانشگاه تهران.
5. مختاری، ن.، و اسفندیاری فرد، ا. (1400). بررسی پیکربندی ساختار فضایی کاروانسرای شاه عباسی در کرج به روش نحو فضا. پژوهش¬های معماری نوین، 2(1)، 96-85..
6. معماریان، غ. ح. (1381). نحو فضای معماری. مجله صفه، 35، 74-84.
7. نجاتی، ن.، کلانتری، س.، بمانیان، م. (1400). آموزش طراحی معماری مبتنی بر هوش مصنوعی. پژوهش¬های معماری نوین، 21(1)، 25-7.
8. Anderson, J. (2017). Basics architecture 03: Architectural design. Bloomsbury Publishing.
9. Çolakoğlu, B., & Yazar, T. (2007). An innovative design education approach: Computational design teaching for architecture. METU JFA, 24(2), 159-168.
10. Baušys, R., & Pankrašovaite, I. (2005). Optimization of architectural layout by the improved genetic algorithm. Journal of Civil Engineering and Management, 11(1), 13-21.
11. Bonnaire, X., & Riff, M. C. (2002, June). A self-adaptable distributed evolutionary algorithm to tackle space planning problems. In International Workshop on Applied Parallel Computing (pp. 403-410). Springer, Berlin, Heidelberg.
12. Fathi, A., Saleh, A., & Hegazy, M. (2016). Computational design as an approach to sustainable regional architecture in the Arab world. Procedia-Social and Behavioral Sciences, 225, 180-190.
13. Gero, J. S., & Maher, M. L. (2013). Modeling creativity and knowledge-based creative design. Psychology Press.
14. Gero, J. S., & Kazakov, V. A. (1997). Learning and re-using information in space layout planning problems using genetic engineering. Artificial Intelligence in Engineering, 11(3), 329-334.
15. Grason, J. (1971, June). An approach to computerized space planning using graph theory. In Proceedings of the 8th Design automation workshop (pp. 170-178).
16. Guo, Z., & Li, B. (2017). Evolutionary approach for spatial architecture layout design enhanced by an agent-based topology finding system. Frontiers of Architectural Research, 6(1), 53-62.
17. Hillier, B. (2007). Space is the machine: a configurational theory of architecture. Space Syntax.
18. Hillier, B., & Sahbaz, O. (2005). High resolution analysis of crime patterns in urban street networks: an initial statistical sketch from an ongoing study of a London borough. In Proceedings Space Syntax. 5th International Symposium, Delft.
19. Inoue, T., Kohama, Y., & Takada, T. (2000). Study on Aarchitectural space planning by optimality method. Japan Society of Mechanical Engineers (OPTIS2000), 2000(4), 281-285.
20. J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amarasinghe. PetaBricks: A language and compiler for algorithmic choice. In ACM Programming Language Design and Implementation, 2009.
21. Jagielski, R., & Gero, J. S. (1997). A genetic programming approach to the space layout planning problem. In CAAD futures 1997 (pp. 875-884). Springer, Dordrecht.
22. Jo, J. H., & Gero, J. S. (1998). Space layout planning using an evolutionary approach. Artificial intelligence in Engineering, 12(3), 149-162.
23. Kilkelly, M. (5). Ways computational design will change the way you work. ArchSmarter. Saatavissa: https://archsmarter. com/computational-design/. Hakupäivä, 2, 2016.
24. Koopmans, T. C., & Beckmann, M. (1957). Assignment problems and the location of economic activities. Econometrica: journal of the Econometric Society, 53-76.
25. Levin, P. H. (1964). Use of graphs to decide the optimum layout of buildings. The Architects' Journal, 7, 809-815.
26. Liggett, R. S. & W. J. Mitchell. (1981). Optimal space planning in practice. Computer-Aided Design, 13(5), 277-288.
27. Markhede, H., & Carranza, P. M. (2007). Spatial Positioning Tool (SPOT). New developments in space syntax software, 1.
28. Menges, A., & Ahlquist, S. (2011). Computational design thinking: computation design thinking. John Wiley & Sons.
29. Michalek, J., Choudhary, R., & Papalambros, P. (2002). Architectural layout design optimization. Engineering optimization, 34(5), 461-484.
30. Pramanik, P. K. D., Mukherjee, B., Pal, S., Pal, T., & Singh, S. P. (2021). Green smart building: Requisites, architecture, challenges, and use cases. In Research Anthology on Environmental and Societal Well-Being Considerations in Buildings and Architecture (pp. 25-72). IGI Global.
31. Rodrigues, E., Gaspar, A. R., & Gomes, Á. (2013). An evolutionary strategy enhanced with a local search technique for the space allocation problem in architecture, Part 2: Validation and performance tests. Computer-Aided Design, 45(5), 898-910.
32. Roth, J., & Hashimshony, R. (1988). Algorithms in graph theory and their use for solving problems in architectural design. computer-aided design, 20(7), 373-381.
33. Simon, H. A. (1973). The structure of ill structured problems. Artificial intelligence, 4(3-4), 181-201.
34. Simon, M., & Hu, M. (2017). Value by design-systematic design decision making in the architectural design process. Proceedings of ARCC 2017: Architecture Of Complexity.
35. Uçar, B. (2006). An assessment of the architectural representation process within the computational design environment (Master's thesis, Middle East Technical University).
36. Yusuf, H. O. (2012). The impact of digital-computational design on the architectural design process. University of Salford.