معرفی مواد هوشمند حافظه دار ساختهشده با نانوفناوری و چاپگرهای چهاربعدی
الموضوعات :محمد آزادی 1 , مهناز فرخ پور 2
1 - دانشگاه سمنان
2 - دانشگاه سمنان
الکلمات المفتاحية: تولید افزایشی, چاپگر چهاربعدی, نانوفناوری, مواد هوشمند, مواد حافظه دار,
ملخص المقالة :
در این مقاله مروری، به چاپگرهای چهاربعدی بر اساس فرایند تولید افزایشی با تأکید بر نانوفناوری پرداخته شده است. امروزه چاپ مواد برای ساختارهای پیچیده سهبعدی، مورد استفاده قرار می گیرد اما بهعنوان فناوری جدیدتر و پیشرفته تر، از فناوری چاپ چهاربعدی در ایجاد مواد هوشمند در نظر گرفته میشود. بنابراین پس از معرفی انواع روش های چهاربعدی، چاپ در مقیاس نانو و چاپ نانوکامپوزیتها نیز بررسی می شود. همچنین در این مطالعه، به کاربردهای چاپ چهاربعدی با تأکید بر نانوفناوری، بهمنظور تولید مواد هوشمند حافظه دار اشاره شده است.
1. Quanjina M., Rejaba M., Idrisa M. S., Kumar N.M., Abdullaha M. H., Reddy G.R., Recent 3D and 4D Intelligent Printing Technologies: A Comparative Review and Future Perspective, Procedia Computer Science, 167, 1210–1219, 2020,
2. Mitchell A., Lafont U., Hołynska M., Semprimoschnig C., Additive Manufacturing - A Review of 4D Printing and Future Applications, Additive Manufacturing, 24, 606–626, 2018,
3. Joshi S., Rawat K., Karunakaran C., Rajamohan V., Mathew T., Koziol K., Thakur T., Balan A.S.S, 4D Printing of Materials for the Future: Opportunities and Challenges, Applied Materials Today, 18, 100490, 2020.
4. Pinho A.C., Buga C.S., Piedade A.P., The Chemistry Behind 4D Printing, Applied Materials Today, 19, 100611, 2020.
5. Deshmukh K, Houkan M.T, Mariam AlMaadeed A, Sadasivuni K, 3D and 4D Printing of Polymer Nanocomposite Materials - Chapter 1: Introduction to 3D and 4D Printing Technology: State of the Art and Recent Trends, Elsevier Inc. 2020.
6. Melchels F.P.W., Feijen J., Grijpma D.W., A Review on Stereolithography and Its
Applications in Biomedical Engineering, Biomaterials, 31, 6121–6130, 2010.
7. Chia H.N., Wu B.M., Recent Advances in 3D Printing of Biomaterials, Journal of Biological Engineering. 9, 4, 2015.
8. Yuan S., Shen F., Chua C.K., Zhou K., Polymeric Composites for Powder-based
Additive Manufacturing: Materials and Applications, Progress in Polymer Science, 91, 141–168, 2019.
9. Tian X., Jin J., Yuan S., Chua C.K., Tor S.B., Zhou K., Emerging 3D-printed Electrochemical Energy Storage Devices: A critical Review, Advanced Energy Materials, 7, 1700127, 2017.
10. Cummins G., Desmulliez M.P.Y., Inkjet Printing of Conductive Materials: A Review,
Circuit World, 38, 193–213, 2012.
11. C L., Toit D., Choonara Y.E., Kumar P., Pillay V., 4D Printing and Beyond: Where to from here, Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering, 139–157, 2020.
12. Javaid M., Haleem A., Significant Advancements of 4D Printing in the Field of Orthopaedics, Journal of Clinical Orthopaedics and Trauma, 11, 4, 485–490, 2020.
13. Alshahrani H., Review of 4D Printing Materials and Reinforced Composites: Behaviors, Applications and Challenges, Journal of Science: Advanced Materials and Devices, 6, 167–185, 2021.
14. Yuan Siang L., Wan Ting S., Lay Poh T., Yunlong W., Yuekun L., Huaqiong L., 4D Printing and Stimuli-responsive Materials in Biomedical Applications, Acta Biomaterialia, 92, 19–36, 2019.
15. Gladman A.S., Matsumoto E.A., Nuzzo R.G., Mahadevan L., Lewis J.A., Biomimetic 4D Printing, Nature Material, 15, 413–418, 2016.
16. Tibbits S., Design to self-assembly, Architectural Design, 82, 68–73, 2012.
17. Tibbits S., 4D Printing: Multi-material Shape Change, Architectural Design, 84, 116–121, 2014.
18. Ryan K., Down M., Banks C., Future of Additive Manufacturing: Overview of 4D and 3D Printed Smart and Advanced Materials and Their Applications, Chemical Engineering Journal, (20)32290-7, 1385–8947, 2020.
19. Falahati M., Ahmadvand P., Safaee S., Chang Y., Lyu Z., Chen R., Li L., Lin Y., Smart Polymers and Nanocomposites for 3D and 4D Printing, Materials Today, 40, 215–245, 2020.
20. Somolinos C.S., 4D Printing: An Enabling Technology for Soft Robotics, Mechanically Responsive Materials for Soft Robotics, 2020.
21. Pei, E., Loh, G.H. Technological Considerations for 4D Printing: An Overview, Progress in Additive Manufacturing, 3, 95–107, 2018.
22. Kumar R., Singh R., Singh M., Kumar P., On ZnO nano Particle Reinforced PVDF Composite Materials for 3D Printing of Biomedical Sensors, Journal of Manufacturing Processes, 60, 268–282, 2020.
23. Hansen C.J., 3D and 4D Printing of Nanomaterials - Chapter 2: Processing Considerations for Reliable Printed Nanocomposites, Elsevier Inc. 2020.
24. Compton B.G., Hmeidat N.S., Pack R.C., Heres M.F., Sangoro J.R., Electrical and Mechanical Properties of 3D-printed Graphene-reinforced Epoxy, JOM, 70, 292–297, 2018.
25. De Leon A.C., Chen Q., Palaganas N.B., Palaganas J.O., Manapat J., Advincula R.C., High Performance Polymer Nanocomposites for Additive Manufacturing Applications, Reactive and Functional Polymers, 103, 141–155, 2016.
26. Choi H.W., Zhou T., Singh M., Jabbour G.E., Recent Developments and Directions in Printed Nanomaterials, Nanoscale, 7, 3338–3355, 2015.
27. Zhou X., Liu C.J., Three-dimensional Printing for Catalytic Applications: Current Status and Perspectives, Advanced Functional Materials, 27, 1701134, 2017.
28. Rayatea A., Jain P.K., A Review on 4D printing material composites and their applications, Materials Today: Proceedings, 5, 20474–20484, 2018.
29. Momeni F., Hassani M.N, Liu X., Ni J., A Review of 4D Printing, Materials and Design, 122, 42–79, 2017.
30. Bogers M., Hadar R., Bilberg A., Additive Manufacturing for Consumer-centric Business Models: Implications for Supply Chains in Consumer Goods Manufacturing, Technological Forecasting and Social Change, 102, 225–239, 2016.
31. Conner B.P., Manogharan, G.P., Martof A.N., Rodomsky L.M., Rodomsky C.M., Jordan, D.C., Limperos J.W., Making Sense of 3-D printing: Creating a Map of Additive Manufacturing Products and Services, Additive Manufacturing, 1, 64–76, 2014.
32. Jacobsen M., Clearing the Way for Pivotal 21st-Century Innovation, in Giftedness and Talent in the 21st Century: Springer, 163–179, 2016.
33. Hawkes E., An B., Benbernou N.M., Tanaka H., Kim S., Demaine E.D., Rus D., Wood R.J., Programmable Matter by Folding, Proceedings of the National Academy of Sciences, 107, 12441–12445, 2010.
34. Rastogi P., Kandasubramanian B., Breakthrough in the Printing Tactics for Stimuli-Responsive Materials: 4D Printing, Chemical Engineering Journal, 366, 264–304, 2019.
35. Khatri B., Lappe K., Habedank M., Mueller T., Megnin C., Hanemann T. Fused Deposition Modeling of Abs-barium Titanate Composites: A Simple Route Towards Tailored Dielectric Devices, Polymers, 10, 666, 2018.
36. Olakanmi E.O., Cochrane R., Dalgarno K., A Review on Selective Laser Sintering/melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties, Progress in Materials Science, 74, 401–477, 2015.
37. Liu, Y., Y. Yang, Wang D., A study on the Residual Stress During Selective Laser Melting (SLM) of Metallic Powder, The International Journal of Advanced Manufacturing Technology, 87, 647–656, 2016.
38. Song X., Chen Y., Lee T. W., Wu S., Cheng L. Ceramic Fabrication Using Mask-image-Projection-based Stereolithography Integrated with Tape-casting, Journal of Manufacturing Processes 20, 456–464, 2015.
39. Ge L., Dong L., Wang D., Ge Q., Gu, G., A Digital Light Processing 3D Printer for Fast and High-precision Fabrication of Soft Pneumatic Actuators, Sensors and Actuators A: Physical, 273, 285–292, 2018.
40. Lewis J.A., Direct Ink Writing of 3D Functional Materials, Advanced Functional Materials 16 (17), 2193–2204, 2006.
41. Sochol R.D., Sweet E., Glick C.C., Venkatesh S., Avetisyan A., Ekman K.F., Raulinaitis A., Tsai A., Wienkers A., Korner K., Hanson K., Long A., Hightower B.J., Slatton G., Burnett D.C., Massey T.L., Iwai K., Lee L.P., Pisterbi K.S.J., Lin L., 3D Printed Micro-fluid-circuitry via Multi-jet-based Additive Manufacturing, Lab on a Chip, 16, 668–678, 2016.
42. Zhou Y., Huang W.M., Kang S.F., Wu X.L., Lu H.B., Fu J., Cui H., From 3D to 4D printing: Approaches and Typical Applications, Journal of Mechanical Science and Technology, 29, 4281–4288, 2015.
43. Zhang Z., Demir K.G., Gu G.X., Developments in 4D-printing: A Review on Current Smart Materials, Technologies, and Applications, International Journal of Smart and Nano Materials 1–20, 2019.
44. Zhang Q., Yan D., Zhang K., Hu, G. Pattern Transformation of heat-shrinkable Polymer by Three-dimensional (3D) Printing Technology, Scientific reports 5, 8936, 2015.
45. Miao S., Cui H., Nowicki M., Xia L., Zhou X., Lee S. J., Zhu W., Sarkar K., Zhang Z., Zhang L. G., Stereolithographic 4D Bioprinting of Multi Responsive Architectures for Neural Engineering, Advanced Biosystems, 2, 1800101, 2018.
46. Dadbakhsh S., Speirs M., Kruth J. P., Schrooten J., Luyten J., Van Humbeeck J., Effect of SLM Parameters on Transformation Temperatures of Shape Memory Nickel-titanium Parts, Advanced Engineering Materials, 16, 1140–1146, 2014.
47. Kim K., Zhu W., Qu X., Aaronson C., McCall W.R., Chen S., Sirbuly D.J., 3D Optical Printing of Piezoelectric Nanoparticle– polymer Composite Materials, ACS Nano, 8, 9799–9806, 2014.
48. Meier, H., Haberland, C., Frenzel, J., Zarnetta, R., Selective Laser Melting of NiTi Shape Memory Components, Innovative Developments in Design and Manufacturing: CRC Press, 251–256, 2009.
49. Momeni F., Ni J., Laws of 4D Printing, Engineering, 6, 9, 1035–1055, 2020.
50. Khoo Z. X., Teoh J.E.M., Liu Y., Chua C. K., Yang S., An J., Leon K., Yeong W.Y., 3D printing of smart materials: A Review on Recent Progresses in 4D Printing, Virtual and Physical Prototyping, 10, 103–122, 2015.
51. Choi J., Kwon O.C., Jo W., Lee H.J., Moon M.W., 4D Printing Technology: A Review, 3D Printing and Additive Manufacturing, 2, 159–167, 2015.
52. Gurung D., Technological Comparison of 3D and 4D Printing, Arcada University, 2017.
53. Sirringhaus H., Shimoda T., Inkjet Printing of Functional Materials, MRS Bulletin, 28, 802–806, 2003.
54. Wang X., Guo Q., Cai X., Zhou S., Kobe B., Yang J, Initiator-integrated 3D Printing Enables the Formation of Complex Metallic Architectures, ACS Applied Materials and Interfaces, 6, 2583–2587, 2013.
55. Shin M., Hoon Song K., Burrell J., Cullen D. Burdick J., Injectable and Conductive Granular Hydrogels for 3D Printing and Electroactive Tissue Support, Advanced Science, 6, 1901229, 2019.
56. Agarwala S, Goh G.L., Goh G.D., Dikshit V., Yeong W.Y., 3D and 4D Printing of Polymer/CNTs-based Conductive Composites - Chapter 10: Fabrication of 3D and 4D Polymer Micro- and Nano-structures Based on Electrospinning, Elsevier Inc., 2020.
57. Radacsi N, Nuansing W, 3D and 4D Printing of Polymer/CNTs-based Conductive Composites - Chapter 7: 3D and 4D Printing of Polymer/CNTs-based Conductive Composites, Elsevier Inc., 2020.
58. Chen A., Yin R., Cao L., Yuan C., Ding H.K., Zhang W.J., Soft robotics: Definition and Research Issues, in: 24th Int. Conf. Mechatronics Mach. Vis. Pract., 366–369, 2017.