ذخیرهسازی انرژی در شبکههای منفعل نوری مبتنی بر گیگابیت بر اساس تعیین نقاط اپتیمال به روش کاهش گرادیان
الموضوعات :علی اکبر نیکوکار 1 , حمیدرضا گودرزی 2 , علی ایلون کشکولی 3
1 - دانشكده علوم پایه، دانشگاه یاسوج
2 - دانشكده علوم پایه، دانشگاه یاسوج
3 - دانشكده علوم پایه، دانشگاه یاسوج
الکلمات المفتاحية: ذخیرهسازی انرژی, شبکه منفعل نوری, GPON, کاهش گرادیان, تضمین کیفیت خدمات,
ملخص المقالة :
کاهش مصرف انرژی به وسیله خاموشکردن فرستنده/ گیرنده در واحدهای شبکه نوری، رایجترین راه حل ذخیرهسازی انرژی در شبکه نوری منفعل مبتنی بر گیگابیت میباشد. محاسبه مدت زمان خاموشی فرستنده/ گیرنده در واحد نوری، اساسیترین چالش در حوزه ذحیرهسازی است؛ زیرا کم یا زیادشدن مدت زمان یادشده علاوه بر ذخیرهسازی انرژی بر کیفیت خدمات نیز تأثیر میگذارد. در این مقاله با استفاده از روش کاهش گرادیان که نوعی الگوریتم بهینهسازی تکرارشونده است، مکانیسم یافتن نقاط ماکسیمال موضعی مدت زمان خاموشی فرستنده/ گیرنده با درنظرگرفتن سطح کیفی خدمات ارائه شده است. در روش ذکرشده، علاوه بر دقت و سرعت همگرایی، محدودیت افزایش بسیار زیاد حجم داده وجود نخواهد داشت. نوع ترافيك، تاريخچه درخواست هاي پهناي باند، وضعيت صف در واحد نوري و مدت زمان تأخير قابل تحمل در كيفيت خدمات، پارامترهاي ورودي الگوريتم مي باشند. تاریخچه درخواستها و پارامترهای یادشده به عنوان دادههای آموزش ماشین استفاده شده است. شبیهسازی انجامشده نشان داد که الگوریتم ارائهشده، پارامترهای سطح خدمات شامل تأخیر بستهها، نرخ ازدسترفتن بستهها، و توان عملیاتی سیستم را در سطح قابل قبولی حفظ کرده و قادر به ذخیرهسازی انرژی در واحدهای شبکه نوری تا 17% میباشد.
[1] Cisco, Cisco Annual Internet Report (2018–2023), https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf, Accessed on 22 May 2022.
[2] E. Gelenbe, Energy Consumption by ICT and Cybersecurity at the Time of COP26, 9 Nov. 2012, https://iotac.eu/energy-consumption-by-ict-and-cybersecurity-at-the-time-of-cop26/
[3] S. S. Newaz, M. S. Jang, F. Y. M. Alaelddin, G. M. Lee, and J. K. Choi, "Building an energy-efficient uplink and downlink delay aware TDM-PON system," Optical Fiber Technology, vol. 29, pp. 34-52, May 2016.
[4] T. Thangappan, B. Therese, A. Suvarnamma, and G. S. Swapna, "Review on dynamic bandwidth allocation of GPON and EPON," J. of Electronic Science and Technology, vol. 18, no. 4, pp. 297-307, Dec. 2020.
[5] R. Bonk, et al., "50G-PON: the first ITU-T higher-speed PON system," IEEE Communications Magazine, vol. 60, no. 3, pp. 48-54, Mar. 2022.
[6] I. Dias, L. Ruan, C. Ranaweera, and E. Wong, "From 5G to beyond: passive optical network and multi-access edge computing integration for latency-sensitive applications," Optical Fiber Technology, vol. 75, Article ID: 103191, 9 pp., Jan. 2023.
[7] A. A. Shabaneh and M. L. Melhem, "Execution simulation design of fiber-to-thehome (FTTH) device ingress networks using GPON with FBG based on optisystem," International J. of Electronics and Telecommunications, vol. 68, no. 4, pp. 783-791, 2022.
[8] A. Tomasov, M. Holik, V. Oujezsky, T. Horvath, and P. Munster, "GPON PLOAMd message analysis using supervised neural networks," Applied Sciences , vol. 10, no. 22, Article ID: 10228139, 12 pp., 2020.
[9] B. R. Rayapati and N. Rangaswamy, "Adaptive scheduling mechanism with variable bit rate traffic in EPON," J. of Optical Communications, vol. 43, no. 2, pp. 235-240, 2022.
[10] International Telecommunication Union, G.984.3: Gigabit-Capable Passive Optical Networks (G-PON): Transmission Convergence Layer Specification, http://www.itu.int/rec/T‑REC‑G.984.3/en, Accessed on 22 May 2022.
[11] M. SafaeiSisakht, A. Nikoukar, H. Goudarzi, I. S. Hwang, and A. Tanny Liem, "Lattice based EPON energy-saving scheme analysis," Optical Fiber Technology, vol. 57, Article ID: 102243, Jul. 2020.
[12] C. Z. Yang, et al., "Enhancing energy efficiency of the doze mode mechanism in ethernet passive optical networks using support vector regression," Photonics, vol. 9, no. 3, Article ID: 9030180, 2022.
[13] S. Dutta, D. Roy, and G. Das, "Protocol design for energy efficient OLT in TWDM-EPON supporting diverse delay bounds," IEEE Trans. on Green Communications and Networking, vol. 5, no. 3, pp. 1438-1450, Sept. 2021.
[14] Y. Lv, M. Bi, Y. Zhai, H. Chi, and Y. Wang, "Study on the solutions to heterogeneous onu propagation delays for energy-efficient and low-latency EPONs," IEEE Access, vol. 8, pp. 193665-193680, 2020.
[15] S. Dutta and G. Das, "Design of energy-efficient EPON: a novel protocol proposal and its performance analysis," IEEE Trans. on Green Communications and Networking, vol. 3, no. 3, pp. 840-852, Sept. 2019.
[16] M. Lotfolahi, C. Z. Yang, I. S. Hwang, A. Nikoukar, and Y. H. Wu, "A predictive logistic regression based doze mode energy-efficiency mechanism in EPON," IEICE Trans. on Information and Systems, vol. E101D, no. 3, pp. 678-684, Mar. 2018.
[17] S. Dutta, D. Roy, and G. Das, "SLA-aware protocol design for energy-efficient OLT transmitter in TWDM-EPON," IEEE Trans. on Green Communications and Networking, vol. 5, no. 4, pp. 1961-1973, Dec. 2021.
[18] M. Zhu, J. Gu, and G. Li, "PWC-PON: an energy-efficient low-latency DBA scheme for time division multiplexed passive optical networks," IEEE Access, vol. 8, pp. 206848-206865, 2020.
[19] I. S. Hwang, A. Nikoukar, Y. M. Su, and A. T. Liem, "Decentralized SIEPON-based ONU-initiated Tx/TRx energy-efficiency mechanism in EPON," J. of Optical Communications and Networking, vol. 8, no. 4, pp. 238-248, Apr. 2016.
[20] International Telecommunication Union, G.Sup45 (09/2022): Power Conservation in Optical Access Systems, Available at https://handle.itu.int/11.1002/1000/15223, Accessed on 22 Oct 2022.
[21] S. S. Lee and K. Y. Li, "Adaptive state transition control for energy-efficient gigabit-capable passive optical networks," Photonic Network Communications, vol. 30, no. 1, pp. 71-84, 2015.
[22] K. A. Memon, et al., "Dynamic bandwidth allocation algorithm with demand forecasting mechanism for bandwidth allocations in 10-gigabit-capable passive optical network," Optik, vol. 183, pp. 1032-1042, Apr. 2019.
[23] A. Dixit, et al., "Dynamic bandwidth allocation with SLA awareness for QoS in ethernet passive optical networks," IEEE/OSA J. of Optical Communications and Networking, vol. 5, no. 3, pp. 240-253, Mar. 2013.
[24] D. Roy, S. Dutta, A. Datta, and G. Das, "A cost effective architecture and throughput efficient dynamic bandwidth allocation protocol for fog computing over EPON," IEEE Trans. on Green Communications and Networking, vol. 4, no. 4, pp. 998-1009, Dec. 2020.
[25] J. Lee, I. Hwang, A. Nikoukar, and A. T. Liem, "Comprehensive performance assessment of bipartition upstream bandwidth assignment schemes in GPON," J. of Optical Communications and Networking, vol. 5, no. 11, pp. 1285-1295, Nov. 2013.
[26] A. R. Dhaini, P. H. Ho, and G. Shen, "Toward green next-generation passive optical networks," IEEE Communications Magazine, vol. 49, no. 11, pp. 94-101, Nov. 2011.