بررسی و مقایسه اثرات دمایی بر باتری لیتیوم- یونی در حالت شارژ سریع با روش جریان ثابت چند مرحلهای و روش جریان ثابت- ولتاژ ثابت
الموضوعات :صهیب اژدری 1 , رحمت اله میرزایی 2
1 - دانشگاه کردستان
2 - دانشگاه کردستان
الکلمات المفتاحية: باتری لیتیوم- یونی, اثرات دمایی, شارژ سریع, تخمین سطح شارژ,
ملخص المقالة :
باتریهای لیتیوم- یونی به دلیل داشتن چگالی بالا برای ذخیرهسازی انرژی و توان در ایستگاههای شارژ سریع، کاربرد فراوانی دارند. نحوه شارژشدن باتریهای لیتیومی بسیار حائز اهمیت است؛ چرا که ساختار آنها به گونهای است که به گرما بسیار حساس هستند. زمانی که از شیوههای شارژ سریع برای شارژ باتریها استفاده میشود، گرمای قابل توجهی تولید میشود که این گرما ناشی از تلفات اهمی باتری و واکنشهای داخلی آن است. شارژ سریع، زمان شارژشدن باتری را به شدت کاهش میدهد؛ اما ممکن است به ساختار آن آسیب بزند. شیوههای مختلفی برای شارژ سریع ارائه شده که هر یک، مزایا و محدودیتهای خود را دارند. با اعمال تغییراتی در شیوه شارژ جریان ثابت چندمرحلهای تلاش شد تا علاوه بر کاهش زمان شارژشدن، از آسیبدیدن باتری جلوگیری شود. این شیوه بهبودیافته قادر است تا در حالتهایی که اثرات دمایی قابل دفع باشد مانند زمانی که سیستم تهویه وجود دارد، زمان شارژ را تا حد امکان کاهش دهد.
[1] M. R. Khalid, M. S. Alam, A. Sarwar, and M. S. Jamil Asghar, "A comprehensive review on electric vehicles charging infrastructures and their impacts on power-quality of the utility grid," ETransportation, vol. 1, Article ID: 100006, Aug. 2019.
[2] S. Sharma, A. K. Panwar, and M. M. Tripathi, "Storage technologies for electric vehicles," J. of Traffic and Transportation Engineering (English edition), vol. 7, no. 3, pp. 340-361, Jun. 2020.
[3] M. A. H. Rafi and J. Bauman, "A comprehensive review of DC fast-charging stations with energy storage: architectures, power converters, and analysis," IEEE Trans. on Transportation Electrification, vol. 7, no. 2, pp. 345-368, Jun. 2020.
[4] A. Turksoy, A. Teke, and A. Alkaya, "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, vol. 133, Article ID: 110274, Nov. 2020.
[5] H. Tu, H. Feng, S. Srdic, and S. Lukic, "Extreme fast charging of electric vehicles: a technology overview," IEEE Trans. on Transportation Electrification, vol. 5, no. 4, pp. 861-878, Dec. 2019.
[6] R. Xiong, Battery Management Algorithm for Electric Vehicles, Singapore: Springer, 2020.
[7] B. Liu, J. Xu, W. Xu, and W. Xia, "An improved adaptive cubature H-infinity filter for state of charge estimation of lithium-ion battery," J. of Power Electronics, vol. 21, no. 10, pp. 1520-1529, Oct. 2021.
[8] P. García-Triviño, J. P. Torreglosa, L. M. Fernández-Ramírez, and F. Jurado, "Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system," Energy, pt. 1, vol. 115, pp. 38-48, Nov. 2016.
[9] Z. Wang, G. Feng, X. Liu, F. Gu, and A. Ball, "A novel method of parameter identification and state of charge estimation for lithium-ion battery energy storage system," J. of Energy Storage, vol. 49, Article ID: 104124, May 2022.
[10] A. Tomaszewska, Z. Chu, X. Feng, S. O'Kane, X. Liu, J. Chen, C. Ji, et al., "Lithium-ion battery fast charging: a review," ETransportation, vol. 1, Article ID: 100011, Aug. 2019.
[11] W. Xie, et al., "Challenges and opportunities toward fast-charging of lithium-ion batteries," J. of Energy Storage, vol. 32, Article ID: 101837, Dec. 2020.
[12] M. Song and S. Y. Choe, "Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium-ion battery," J. of Power Sources, vol. 436, Article ID: 226835, Oct. 2019.
[13] Y. Miao and Z. Gao, "Estimation for state of charge of lithium-ion batteries by adaptive fractional-order unscented Kalman filters," J. of Energy Storage, vol. 51, Article ID: 104396, Jul. 2022.
[14] J. Jiang and C. Zhang, Fundamentals and Applications of Lithium-Ion Batteries in Electric Drive Vehicles, John Wiley & Sons, 2015.
[15] J. Jiang, "Charging optimization methods for lithium-ion batteries," Behaviour of Lithium-Ion Batteries in Electric Vehicles, pp. 225-265, Springer, Cham, 2018.
[16] Y. Yin, Y. Hu, S. Y. Choe, H. Cho, and W. T. Joe, "New fast charging method of lithium-ion batteries based on a reduced order electrochemical model considering side reaction," J. of Power Sources, vol. 423, pp. 367-379, May 2019.
[17] S. Wang, et al., "A model-based continuous differentiable current charging approach for electric vehicles in direct current microgrids," J. of Power Sources, vol. 482, Article ID: 229019, Jan. 2021.
[18] L. Wang, et al., "Modeling and state of charge estimation of inconsistent parallel lithium-ion battery module," J. of Energy Storage, vol. 51, Article ID: 104565, Jul. 2022.
[19] Y. Tahir, et al., "A state-of-the-art review on topologies and control techniques of solid-state transformers for electric vehicle extreme fast charging," IET Power Electronics, vol. 14, no. 9, pp. 1560-1576, May 2021.
[20] S. J. An, et al., "A fast method for evaluating stability of lithium-ion batteries at high C-rates," J. of Power Sources, vol. 480, Article ID: 228856, Dec. 2020.
[21] Q. Ouyang, G. Xu, H. Fang, and Z. Wang, "Fast charging control for battery packs with combined optimization of charger and equalizers," IEEE Trans. on Industrial Electronics, vol. 68, no. 11, pp. 11076-11086, Nov. 2020.
[22] L. Patnaik, A. V. J. S. Praneeth, and S. S. Williamson, "A closed-loop constant-temperature constant-voltage charging technique to reduce charge time of lithium-ion batteries," IEEE Trans. on Industrial Electronics, vol. 66, no. 2, pp. 1059-1067, Feb. 2018.
[23] J. Sun, Q. Ma, R. Liu, T. Wang, and C. Tang, "A novel multiobjective charging optimization method of power lithium-ion batteries based on charging time and temperature rise," International J. of Energy Research, vol. 43, no. 13, pp. 7672-7681, 2019.
[24] M. Ye, H. Gong, R. Xiong, and H. Mu, "Research on the battery charging strategy with charging and temperature rising control awareness," IEEE Access, vol. 6, pp. 64193-64201, 2018.
[25] J. Hou, Y. Yang, and T. Gao, "A variational bayes based state-of-charge estimation for lithium-ion batteries without sensing current," IEEE Access, vol. 9, pp. 84651-84665, 2021.
[26] Z. Chen, J. Zhou, F. Zhou, and S. Xu, "State-of-charge estimation of lithium-ion batteries based on improved H infinity filter algorithm and its novel equalization method," J. of Cleaner Production, vol. 290, Article ID: 125180, Mar. 2021.
[27] Y. Wang, H. Fang, L. Zhou, and T. Wada, "Revisiting the state- of-charge estimation for lithium-ion batteries: a methodical investigation of the extended Kalman filter approach," IEEE Control Systems Magazine, vol. 37, no. 4, pp. 73-96, Aug. 2017.
[28] X. Wei, M. Yimin, and Z. Feng, "Lithium-ion battery modeling and state of charge estimation," Integrated Ferroelectrics, vol. 200, no. 1, pp. 59-72, 2019.
[29] W. Xu, J. Xu, J. Lang, and X. Yan, "A multi-timescale estimator for lithium-ion battery state of charge and state of energy estimation using dual H infinity filter," IEEE Access, vol. 7, pp. 181229-181241, 2019.
[30] B. Liu, J. Xu, W. Xu, and W. Xia, "An improved adaptive cubature H-infinity filter for state of charge estimation of lithium-ion battery," J. of Power Electronics, vol. 21, no. 10, pp. 1520-1529, Oct. 2021.
[31] Q. Yu, R. Xiong, C. Lin, W. Shen, and J. Deng, "Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters," IEEE Trans. on Vehicular Technology, vol. 66, no. 10, pp. 8693-8701, Oct. 2017.
[32] C. Chen, R. Xiong, and W. Shen, "A lithium-ion battery-in-the-loop approach to test and validate multiscale dual H infinity filters for state-of-charge and capacity estimation," IEEE Trans. on Power Electronics, vol. 33, no. 1, pp. 332-342, Jan. 2017.
[33] J. Zhu, H. Zhang, G. Wu, S. Zhu, and W. Liu, "Thermal performance of cylindrical battery module with both axial and radial thermal paths: numerical simulation and thermal resistance network analysis," J. of Energy Storage, vol. 49, Article ID: 104197, Jan. 2022.