تعبیهسازی شبکههای اجتماعی مبتنی بر کاربست روشهای تشخیص جوامع و استخراج ویژگیهای معنایی نهفته
الموضوعات :محدثه طاهرپرور 1 , فاطمه احمدی آبکناری 2 , پیمان بیات 3
1 - گروه مهندسی کامپیوتر، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
2 - دانشکده مهندسی کامپیوتر و فناوری اطلاعات، دانشگاه پیام نور، تهران، ایران
3 - گروه مهندسی کامپیوتر، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
الکلمات المفتاحية: تعبیهسازی شبکه, شبکههای اجتماعی همپوشان, مدلهای موضوعی جفتکلمه, یادگیری عمیق,
ملخص المقالة :
هدف از تعبیهسازی شبکههای اجتماعی که اخیراً توجه زیادی را به خود جلب کرده، یادگیری نمایش در ابعاد پایین برای هر گره در شبکه با حفظ ساختار و خصوصیات شبکه است. در این مقاله، تأثیر نحوه تشخیص جوامع در حالتهای مختلف مانند تشخیص جامعه حین یا قبل از روند پیادهروی تصادفی و هچنین تأثیر معنایی اطلاعات متنی هر گره بر روی تعبیهسازی شبکه مورد بررسی قرار گرفته و دو چارچوب اصلی با نامهای تعبیهسازی شبکه آگاه به جامعه و متن و تعبیهسازی شبکه مبتنی بر جامعه و ویژگیهای معنایی پیشنهاد شده است. در این مقاله، در تعبیهسازی شبکه آگاه به جامعه و متن، تشخیص جوامع قبل از روند پیادهروی تصادفی با بهکارگیری روش غیرهمپوشان ادموت و همپوشان اگونتاسپلیتر انجام گرفته است. با این حال در تعبیهسازی شبکه مبتنی بر جامعه و ویژگیهای معنایی، تشخیص جوامع حین رخداد پیادهروی تصادفی و با استفاده از مدل موضوعی جفتکلمه اعمال شده است. در تمامی روشهای ارائهشده، تحلیل متنی مورد بررسی قرار گرفته و نهایتاً نمایش نهایی با بهکارگیری مدل Skip-Gram در شبکه انجام میگردد. آزمایشهای انجامشده نشان دادهاند که روشهای پیشنهادی این مقاله از روشهای با نامهای پیادهروی عمیق، CARE، CONE و COANE بهتر عمل کردهاند.
[1] P. Goyal and E. Ferrara, "Graph embedding techniques, applications, and performance: a survey," Knowl.-Based Syst., vol. 151, pp. 78-94, Jul. 2018.
[2] H. Cai, V. W. Zheng, and K. Chang, "A comprehensive survey of graph embedding: problems, techniques and applications," IEEE Trans. Knowl. Data Eng., vol. 30, no. 9, pp. 1616-1637, Sept. 2018.
[3] I. Brugere, B. Gallagher, and T. Y. BergerWolf, "Network structure inference, a survey: motivations, methods, and applications," ACM Comput. Surv., vol. 51, no. 2, Article ID: 24, 39 pp., Mar. 2019.
[4] F. Huang, X. Zhang, J. Xu, C. Li, and Z. Li, "Network embedding by fusingmultimodal contents and links," Knowl.-Based Syst., vol. 171, pp. 44-55, May 2019.
[5] J. Liao, S. Wang, D. Li, and X. Li, "FREERL: fusion relation embedded representation learning framework for aspect extraction," Knowl. Based Syst., vol. 135, pp. 9-17, Nov. 2017.
[6] L. Boratto, S. Carta, G. Fenu, and R. Saia, "Using neural word embeddings to model user behavior and detect user segments," Knowl.-Based Syst., vol. 108, pp. 5-14, Sept. 2016.
[7] M. Ji, J. Han, and M. Danilevsky, "Ranking-based classification of heterogeneous information networks," in Proc. of the 17th ACM SIGKDD In. Conf. on Knowledge Discovery and Data Mining, pp. 1298-1306, San Diego, CA, USA, 21-24 Aug. 2011.
[8] R. A. Sinoara, J. Camachocollados, R. Rossi, R. Navigli, and S. O. Rezende, "Knowledge-enhanced document embeddings for text classification," Knowl.-Based Syst. vol. 163, pp. 955-971, Jan. 2019.
[9] D. Liben-Nowell and J. Kleinberg, "The link-prediction problem for social networks," J. Am. Soc. Inf. Sci. Technol., vol. 58, no. 7, pp. 1019-1031, May 2007.
[10] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, "Distributed representations of words and phrases and their compositionality," in Proc. of the 26th Int. Conf. on Neural Information Processing Systems, vol. 2, pp. 3111-3119, Lake Tahoe, NA, USA, 5-10 Dec. 2013.
[11] B. Perozzi, R. AlRfou, and S. Skiena, "Deepwalk: online learning of social representations," in Proc. of the 20th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 701-710, New York, NY, USA, 24-27 Aug. 2014.
[12] A. Grover and J. Leskovec, "node2vec: scalable feature learning for networks," in Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 855-864, San Francisco, CA, USA, 13-17 Aug. 2016.
[13] J. Tang, et al., "LINE: large-scale information network embedding," in Proc. of the 24th Int. Conf. on World Wide Web, pp. 1067-1077, Florence Italy, 18-22 May 2015.
[14] W. Hamilton, Z. Ying, and J. Leskovec, "Inductive representation learning on large graphs," in Proc. of the 31st Int. Conf. on Neural Information Processing Systems, pp. 1024-1034, Long Beach, CA, USA, 4-9 Dec. 2017.
[15] H. Gao and H. Huang, "Deep attributed network embedding," in Proc. of the 27th Int. Joint Conf. on Artificial Intelligence, pp. 3364-3370, Stockholm Sweden, 13-19 Jul. 2018.
[16] X. Huang, J. Li, and X. Hu, "Label informed attributed network embedding," in Proc. of the 10th ACM Int. Conf. on Web Search and Data Mining, pp. 731-739, Cambridge, UK, 6-10 Feb. 2017.
[17] J. Liang, P. Jacobs, J. Sun, and S. Parthasarathy, "Semi-supervised embedding in attributed networks with outliers," in Proc. of the SIAM Int. Conf. on Data Mining, pp. 153-161, 2018.
[18] L. Yang, et al., "Modularity based community detection with deep learning," in Proc. of the 25th Int. Joint Conf. on Artificial Intelligence, pp. 2252-2258, New York, NY, USA, 9-15 Jul. 2016.
[19] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, "Community preserving network embedding," Proc. of the 31st AAAI Conf. on Artificial Intelligence, pp. 203-209, Washington, DC, USA, 4-7 Feb. 2017.
[20] S. Ismail, and R. Ismail, "Modularity approach for community detection in complex networks," in Proc. the 11th Int, Conf. Ubiquitous Information Management and Communication, 6 pp., Beppu, Japan, 5-7 Jan. 2017.
[21] S. Fortunato and M. Barthelemy, "Resolution limit in community detection," in Proc. Natl. Acad. Sci. USA, vol. 104, no. 1, pp. 36-41, Jan. 2007.
[22] G. Salton and C. Buckley, "Term-weighting approaches in automatic text retrieval," Inf. Process. Manag., vol. 24, no. 5, pp. 513-523, 1988.
[23] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," J. Mach. Learn. Res., vol. 3, no. 1, pp. 993-1022, 2003.
[24] M. M. Keikha, M. Rahgozar, and M. Asadpour, "Community aware random walk for network embeding," Knowl. Based Syst., vol. 148, pp. 47-54, 2018.
[25] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, "Fast unfolding of communities in large networks," J. Stat. Mech., vol. 10, Article ID: P10008, 2008.
[26] P. Li, L. Huang, C. Wang, and J. Lai, "EdMot: an edge enhancement approach for motif-aware community detection," in Proc. of the 25th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining, pp. 479-487, Anchorage, AK, USA, 4-8 Aug. 2019.
[27] A. Epasto, S. La. anzi, R. Leme, "Ego-Spli.ing framework: from non-overlapping to overlapping clusters," in Proc. of the 23th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining, Halifax, Canada, 13-17 Aug. 2017.
[28] L. Tang and H. Liu, "Leveraging social media networks for classification," Data Min. Knowl. Discov., vol. 23, no. 3, pp. 447-478, Nov. 2011.
[29] J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 250, no. 5500, pp. 2319-2323, 22 Dec. 2000.
[30] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola, "Distributed large-scale natural graph factorization," in Proc. of the 22nd Int. Conf. on World Wide Web, pp. 37-48, Rio de Janeiro, Brazil, 13-17 May 2013.
[31] T. F. Cox and M. A. Cox, Multidimensional Scaling, CRC Press, 2000.
[32] S. Yan, D. Xu, B. Zhang, H. J. Zhang, Q. Yang, and S. Lin, "Graph embedding and extensions: a general framework for dimensionality reduction," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 40-51, Jan. 2007.
[33] S. Fortunato, "Community detection in graphs," Phys. Rep., vol. 486, no. 3-5, pp. 75-174, Feb. 2010.
[34] K. Henderson, et al., "RolX: structural role extraction & mining in large graphs," in Proc. of the 18th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining, Beijing, China, 12-16 Aug. 2012.
[35] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, "Network representation learning with rich text information," in Proc. of the 24th Int. Joint Conf. on Artificial Intelligence, pp. 2111-2117, Buenos Aires, Argentina, 25-31 Jul. 2015.
[36] Z. Chen, T. Cai, C. Chen, Z. Zheng, and G. Ling, "SINE: side information network embedding," in Proc. of the 24th Int. Conf. on Database Systems for Advanced Applications, pp. 692-708, Chiang Mai, Thailand, 22-25 Apr. 2019.
[37] D. Wang, P. Cui, and W. Zhu, "Structural deep network embedding," in Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 1225-1234, San Francisco, CA, USA, 13-17 Aug. 2016.
[38] X. Wang, D. Jin, X. Cao, L. Yang, and W. Zhang, "Semantic community identification in large attribute networks," in Proc. of the 30th AAAI Conf. on Artificial Intelligence, pp. 265-271, Phoenix, AZ, USA, 12-17 Feb. 2016.
[39] M. Li, J. Liu, P. Wu, and X. Teng, "Evolutionary network embedding preserving both local proximity and community structure," IEEE Trans. Evol. Comput., vol. 24, no. 3, pp. 523-535, Jun. 2019.
[40] J. Chen, Q. Zhang, and X. Huang, "Incorporate group information to enhance network embedding," in Proc. of the 25th ACM Int. Conf. on Information and Knowledge Management, pp. 1901-1904, Indianapolis, IN, USA, 24-28 Oct. 2016.
[41] X. Xia, et al., "Improving automated bug triaging with specialized topic model," IEEE Trans. Softw. Eng., vol. 43, no. 3, pp. 272-297, Mar. 2017.
[42] T. Hofmann, "Probabilistic latent semantic indexing," in Proc. of the 22nd Annual Int. ACM SIGIR Conf. on Research and Revelopment in Information Retrieval, pp. 50-57, Berkeley, CA, USA, 15-19 Aug. 1999.
[43] M. Steyvers, P. Smyth, M. RosenZvi, and T. Griffiths, "Probabilistic author-topic models for information discovery," in Proc. of the 10th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 306-315, Seattle, WA, USA, 22-25 Aug. 2004.
[44] M. RosenZvi, T. Griffiths, M. Steyvers, and P. Smyth, "The author-topic model for authors and documents," in Proc. of the 20th Conf. on Uncertainty in Artificial Intelligence, pp. 487-494, Banff, Canada, 6-11 Jul. 2004.
[45] Q. Mei, D. Cai, D. Zhang, and C. Zhai, "Topic modeling with network regularization," in Proc. of the 17th Int. Conf. on World Wide Web, pp. 101-110, Beijing, China, 21-25 Apr. 2008.
[46] Y. Shi, M. Lei, H. Yang, and L. Niu, "Diffusion network embedding," Pattern Recognit., vol. 88, pp. 518-531, Apr. 2019.
[47] H. Chen, et al., "Exploiting centrality information with graph convolutions for network representation learning," in Proc. of the 35th IEEE Int. Conf. on Data Engineering, pp. 590-601, Macao, China ,8-11 Apr. 2019.
[48] W. Zhao, H. Ma, Z. Li, X. Ao, and N. Li, "SBRNE: an improved unified framework for social and behavior recommendations with network embedding," in Proc. of the 24th Int. Conf. on Database Systems for Advanced Applications, pp. 555-571, Chiang Mai, Thailand, 22-22 Apr. 2019.
[49] Q. Li, J. Zhong, Q. Li, Z. Cao, and C. Wang, "Enhancing network embedding with implicit clustering," in Proc. of the 24th Int. Conf. on Database Systems for Advanced Applications, pp. 452-467, Chiang Mai, Thailand, April 22-25, 2019.
[50] L. Wu, D. Wang, S. Feng, Y. Zhang, and G. Yu, "MDAL: multi-task dual attention LSTM model for semi-supervised network embedding," in Proc. of the 24th Int. Conf. on Database Systems for Advanced Applications, Chiang Mai, Thailand, April 22-25, 2019.
[51] Y. Gao, M. Gong, Y. Xie, and H. Zhong, "Community-oriented attributed network embedding," Knowledge-Based Systems, vol. 193, Article ID: 105418, Apr. 2019.
[52] X. Cheng, X. Yan, Y. Lan, and J. Guo, "BTM: topic modeling over short texts," IEEE Trans. on Knowledge and Data Engineering, vol. 26, no. 12, pp. 2928 - 2941, Dec. 2013.
[53] D. Whitley, "A genetic algorithm tutorial," Stat. Comput., vol. 4, no. 2, pp. 65-85, Jun. 1994.
[54] J. Tang, Z. Meng, X. Nguyen, Q. Mei, and M. Zhang, "Understanding the limiting factors of topic modeling via posterior contraction analysis," in Proc. of the 31st Int. Conf. on Machine Learning, pp. 190-198, Beijing China 21-26 Jun. 2014.
[55] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, "Automating the construction of internet portals with machine learning," Information Retrieval. vol. 3, no. 2, pp. 127-163, Jun. 2000.
[56] -, DBLP Citation Network, https://www.aminer.org/citation