تخمین تراوایی با بکارگیری لاگ های پتروفیزیکی و روش های هوش مصنوعی: مطالعه موردی در مخزن آسماری میدان نفتی اهواز
الموضوعات :ابوذر محسنی پور 1 , بهمن سلیمانی 2 , ایمان زحمتکش 3 , ایمان ویسی 4
1 - علوم زمین دانشگاه چمران اهواز
2 - دانشگاه شهیدچمران اهواز
3 - دانشگاه شهید چمران اهواز
4 - شرکت ملی مناطق نفتخیز جنوب
الکلمات المفتاحية: تراوایی, شبکه عصبی مصنوعی, الگوریتم رقابت استعماری, الگوریتم ازدحام ذرات, لاگ تشدید مغناطیس هسته ای, مخزن آسماری,
ملخص المقالة :
تراوایی از جمله مهمترین پارامترهای پتروفیزیکی است که نقشی اساسی را در بحث های تولید و توسعه میادین هیدروکربونی دارند. در این پژوهش ابتدا نمودار تشدید مغناطیسی هسته ای در مخزن آسماری مورد ارزیابی قرار گرفت و تراوایی با استفاده از دو روش مرسوم مدل سیال آزاد(Coates) و مدل شلمبرژه یا میانگین T2 (SDR) محاسبه شد. سپس با ساخت مدل ساده شبکه عصبی مصنوعی و همچنین ترکیب آن با الگوریتم های بهینه سازی رقابت استعماری (ANN-ICA) و ازدحام ذرات (ANN-PSO) تراوایی تخمین زده شد. در نهایت نتایج حاصل با مقایسه تراوایی COATES و تراوایی SDR تخمین زده شده نسبت به مقدار واقعی، مورد بررسی قرار گرفتند و دقت تخمین از نظر مجموع مربع خطا و ضریب همبستگی مقایسه شد. نتایج حاصل از این مطالعه، بیانگر افزایش دقت تخمین تراوایی با استفاده از ترکیب الگوریتم های بهینه سازی با شبکه عصبی مصنوعی بود. نتایج حاصل از این روش می تواند به عنوان روشی قدرتمند جهت بدست آوردن سایر پارامترهای پتروفیزیکی استفاده شود.
مطیعی، ه.، 1374، زمین شناسی نفت ایران(جلد 1و 2)، طرح تدوین کتاب زمین شناسی ایران، سازمان زمین شناسی کشور، 1009 صفحه.
Aïfa, T., Baouche, R., & Baddari, K. (2014). Neuro-fuzzy system to predict permeability and porosity from well log data: A case study of Hassi R׳ Mel gas field, Algeria. Journal of Petroleum Science and Engineering, 123, 217–229.
Anemangely, M., Ramezanzadeh, A., & Tokhmechi, B. (2017). Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: A case study from Ab-Teymour Oilfield. Journal of Natural Gas Science and Engineering, 38, 373–387.
Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. 2007 IEEE Congress on Evolutionary Computation, 4661–4667.
Babadagli, T., & Al-Salmi, S. (2004). A review of permeability-prediction methods for carbonate reservoirs using well-log data. SPE Reservoir Evaluation & Engineering, 7(02), 75–88.
Bai, Y., & Tan, M. (2021). Dynamic committee machine with fuzzy-c-means clustering for total organic carbon content prediction from wireline logs. Computers & Geosciences, 146, 104626.
Baouche, R., & Nabawy, B. S. (2021). Permeability prediction in argillaceous sandstone reservoirs using fuzzy logic analysis: A case study of triassic sequences, Southern Hassi R’Mel Gas Field, Algeria. Journal of African Earth Sciences, 173, 104049.
Baziar, S., Tadayoni, M., Nabi-Bidhendi, M., & Khalili, M. (2014). Prediction of permeability in a tight gas reservoir by using three soft computing approaches: A comparative study. Journal of Natural Gas Science and Engineering, 21, 718–724.
Bernal, E., Castillo, O., Soria, J., & Valdez, F. (2017). Imperialist competitive algorithm with dynamic parameter adaptation using fuzzy logic applied to the optimization of mathematical functions. Algorithms, 10(1), 18.
Bhatt, A., & Helle, H. B. (2002). Committee neural networks for porosity and permeability prediction from well logs. Geophysical Prospecting, 50(6), 645–660.
Chaki, S., Routray, A., & Mohanty, W. K. (2018). Well-log and seismic data integration for reservoir characterization: A signal processing and machine-learning perspective. IEEE Signal Processing Magazine, 35(2), 72–81.
Chau, K W. (2007). Application of a PSO-based neural network in analysis of outcomes of construction claims. Automation in Construction, 16(5), 642–646. https://doi.org/10.1016/j.autcon.2006.11.008
Coates, G. R., Xiao, L., & Prammer, M. G. (1999). NMR logging. Principles and Interpretation. Halliburton Energy Service, Huston, Texas.
Cui, Y., Guo, Q., Leighton, J. P., & Chu, M.-W. (2020). Log Data Analysis with ANFIS: A Fuzzy Neural Network Approach. International Journal of Testing, 20(1), 78–96.
Dhanarajan, G., Mandal, M., & Sen, R. (2014). A combined artificial neural network modeling-particle swarm optimization strategy for improved production of marine bacterial lipopeptide from food waste. Biochemical Engineering Journal, 84, 59–65. https://doi.org/10.1016/j.bej.2014.01.002
Doveton, J. H., & Prensky, S. E. (1992). Geological applications of wireline logs: a synopsis of developments and trends. The Log Analyst, 33(3), 286–303.
Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1, 39–43.
Ehsan, M., & Gu, H. (2020). An integrated approach for the identification of lithofacies and clay mineralogy through Neuro-Fuzzy, cross plot, and statistical analyses, from well log data. Journal of Earth System Science, 129(1), 1–13.
Elkatatny, S., Mahmoud, M., Tariq, Z., & Abdulraheem, A. (2018). New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network. Neural Computing and Applications, 30(9), 2673–2683.
Emami, H., & Derakhshan, F. (2015). Election algorithm: A new socio-politically inspired strategy. AI Communications, 28(3), 591–603.
Fang, Q., Nguyen, H., Bui, X.-N., & Nguyen-Thoi, T. (2020). Prediction of blast-induced ground vibration in open-pit mines using a new technique based on imperialist competitive algorithm and M5Rules. Natural Resources Research, 29(2), 791–806.
Fathy, A., & Rezk, H. (2017). Parameter estimation of photovoltaic system using imperialist competitive algorithm. Renewable Energy, 111, 307–320.
Golsanami, N., Kadkhodaie-Ilkhchi, A., Sharghi, Y., & Zeinali, M. (2014). Estimating NMR T2 distribution data from well log data with the use of a committee machine approach: A case study from the Asmari formation in the Zagros Basin, Iran. Journal of Petroleum Science and Engineering, 114, 38–51.
Gowida, A., Elkatatny, S., Al-Afnan, S., & Abdulraheem, A. (2020). New computational artificial intelligence models for generating synthetic formation bulk density logs while drilling. Sustainability, 12(2), 686.
Grimaldi, E Alfassio, Grimaccia, F., Mussetta, M., & Zich, R. E. (2004). PSO as an effective learning algorithm for neural network applications. ICCEA 2004 - 2004 3rd International Conference on Computational Electromagnetics and Its Applications, Proceedings, 557–560. https://doi.org/10.1109/iccea.2004.1459416
Hassall, J. K., Ferraris, P., Al-Raisi, M., Hurley, N. F., Boyd, A., & Allen, D. F. (2004). Comparison of permeability predictors from NMR, formation image and other logs in a carbonate reservoir. Abu Dhabi International Conference and Exhibition.
Hosseini-Moghari, S.-M., Morovati, R., Moghadas, M., & Araghinejad, S. (2015). Optimum operation of reservoir using two evolutionary algorithms: imperialist competitive algorithm (ICA) and cuckoo optimization algorithm (COA). Water Resources Management, 29(10), 3749–3769.
Hosseini, S., & Al Khaled, A. (2014). A survey on the imperialist competitive algorithm metaheuristic: implementation in engineering domain and directions for future research. Applied Soft Computing, 24, 1078–1094.
Hosseinzadeh, S., Kadkhodaie, A., & Yarmohammadi, S. (2020). NMR derived capillary pressure and relative permeability curves as an aid in rock typing of carbonate reservoirs. Journal of Petroleum Science and Engineering, 184, 106593.
Ja’fari, A., & Moghadam, R. H. (2012). Integration of ANFIS, NN and GA to determine core porosity and permeability from conventional well log data. Journal of Geophysics and Engineering, 9(5), 473–481.
Jamialahmadi, M., & Javadpour, F. G. (2000). Relationship of permeability, porosity and depth using an artificial neural network. Journal of Petroleum Science and Engineering, 26(1–4), 235–239.
Jamshidian, M., Hadian, M., Zadeh, M. M., Kazempoor, Z., Bazargan, P., & Salehi, H. (2015). Prediction of free flowing porosity and permeability based on conventional well logging data using artificial neural networks optimized by imperialist competitive algorithm–a case study in the South Pars Gas field. Journal of Natural Gas Science and Engineering, 24, 89–98.
Kadkhodaie-Ilkhchi, A., Rezaee, M. R., Hatherly, P., & Chehrazi, A. (2009). Multitransform of Seismic Attributes to Petrophysical Properties Using Committee Fuzzy Inference System. Shiraz 2009-1st EAGE International Petroleum Conference and Exhibition, cp-125.
Kadkhodaie‐Ilkhchi, A., & Amini, A. (2009). A fuzzy logic approach to estimating hydraulic flow units from well log data: A case study from the Ahwaz oilfield, South Iran. Journal of Petroleum Geology, 32(1), 67–78.
Kamali, M. R., & Mirshady, A. A. (2004). Total organic carbon content determined from well logs using ΔLogR and Neuro Fuzzy techniques. Journal of Petroleum Science and Engineering, 45(3–4), 141–148.
Kar, S., Das, S., & Ghosh, P. K. (2014). Applications of neuro fuzzy systems: A brief review and future outline. Applied Soft Computing, 15, 243–259.
Karami, S., & Shokouhi, S. B. (2012). Optimal Hierarchical Remote Sensing Image Clustering using Imperialist Competitive Algorithm. In Recent Advances in Computer Science and Information Engineering (pp. 555–561). Springer.
Karimi, H., & Yousefi, F. (2012a). Application of artificial neural network-genetic algorithm (ANN-GA) to correlation of density in nanofluids. Fluid Phase Equilibria, 336, 79–83. https://doi.org/10.1016/j.fluid.2012.08.019
Kennedy, J., Kennedy, J. F., Eberhart, R. C., & Shi, Y. (2001). Swarm intelligence. Morgan Kaufmann.
Labani, M. M., Kadkhodaie-Ilkhchi, A., & Salahshoor, K. (2010). Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: A case study from the Iranian part of the South Pars gas field, Persian Gulf Basin. Journal of Petroleum Science and Engineering, 72(1–2), 175–185.
Lin, X., Sun, J., Palade, V., Fang, W., Wu, X., & Xu, W. (2012a). Training ANFIS parameters with a quantum-behaved particle swarm optimization algorithm. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7331 LNCS(PART 1), 148–155. https://doi.org/10.1007/978-3-642-30976-2_18
Malki, H. A., & Baldwin, J. (2002). A neuro-fuzzy based oil/gas producibility estimation method. Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No. 02CH37290), 1, 896–901.
Mohaghegh, S., Arefi, R., Ameri, S., & Hefner, M. H. (1994). A methodological approach for reservoir heterogeneity characterization using artificial neural networks. SPE Annual Technical Conference and Exhibition.
Mollajan, A. (2015). Application of local linear neuro-fuzzy model in estimating reservoir water saturation from well logs. Arabian Journal of Geosciences, 8(7), 4863–4872.
Moradi, M., Tokhmechi, B., & Masoudi, P. (2019). Inversion of well logs into rock types, lithofacies and environmental facies, using pattern recognition, a case study of carbonate Sarvak Formation. Carbonates and Evaporites, 34(2), 335–347.
Moussa, T., Elkatatny, S., Mahmoud, M., & Abdulraheem, A. (2018). Development of new permeability formulation from well log data using artificial intelligence approaches. Journal of Energy Resources Technology, 140(7).
Nawi, N. M., Ransing, M. R., & Ransing, R. S. (2006). An improved learning algorithm based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for back propagation neural networks. Sixth International Conference on Intelligent Systems Design and Applications, 1, 152–157.
Ndiaye, A., Thiaw, L., Sow, G., & Fall, S. S. (2014). Development of a multilayer perceptron (MLP) based neural network controller for grid connected photovoltaic system. International Journal of Physical Sciences, 9(3), 41–47.
Nemati, K., Shamsuddin, S. M., & Darus, M. (2014). An optimization technique based on imperialist competition algorithm to measurement of error for solving initial and boundary value problems. Measurement, 48, 96–108.
Nourafkan, A., & Kadkhodaie-Ilkhchi, A. (2015). Shear wave velocity estimation from conventional well log data by using a hybrid ant colony–fuzzy inference system: A case study from Cheshmeh–Khosh oilfield. Journal of Petroleum Science and Engineering, 127, 459–468.
Ogilvie, J. W. L., & Ogilvie, G. L. (2002). Self-removing email verified or designated as such by a message distributor for the convenience of a recipient. Google Patents.
Olatunji, O. O., Akinlabi, S., Madushele, N., & Adedeji, P. A. (2019). Estimation of the elemental composition of biomass using hybrid adaptive neuro-fuzzy inference system. BioEnergy Research, 12(3), 642–652.
Randall, L., Green, K., & Prichard, T. (1999). Estimation of capillary bound water in carbonate reservoir samples by NMR imaging and relaxation measurements. SCA-9947.
Razmjooy, N., Ramezani, M., & Ghadimi, N. (2017). Imperialist competitive algorithm-based optimization of neuro-fuzzy system parameters for automatic red-eye removal. International Journal of Fuzzy Systems, 19(4), 1144–1156.
Rezaee, M. R., Jafari, A., & Kazemzadeh, E. (2006). Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks. Journal of Geophysics and Engineering, 3(4), 370–376.
Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S. Bin, Nor, N. M., & Petkovic, D. (2016). Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength. Steel Compos Struct, 21(3), 679–688.
Saggaf, M. M., & Nebrija, E. L. (2003). Estimation of missing logs by regularized neural networks. AAPG Bulletin, 87(8), 1377–1389.
Sfidari, E., Amini, A., Kadkhodaie, A., & Ahmadi, B. (2012). Electrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the South Pars Gas Field, Persian Gulf. Geopersia, 2(2), 11–23.
Sharafi, Y., Khanesar, M. A., & Teshnehlab, M. (2016). COOA: Competitive optimization algorithm. Swarm and Evolutionary Computation, 30, 39–63.
Sihag, P., Tiwari, N. K., & Ranjan, S. (2019). Prediction of unsaturated hydraulic conductivity using adaptive neuro-fuzzy inference system (ANFIS). ISH Journal of Hydraulic Engineering, 25(2), 132–142.
Silvestre, M. R., & Ling, L. L. (2014). Pruning methods to MLP neural networks considering proportional apparent error rate for classification problems with unbalanced data. Measurement, 56, 88–94.
Tabatabaei, S. M. E., Kadkhodaie-Ilkhchi, A., Hosseini, Z., & Moghaddam, A. A. (2015). A hybrid stochastic-gradient optimization to estimating total organic carbon from petrophysical data: A case study from the Ahwaz oilfield, SW Iran. Journal of Petroleum Science and Engineering, 127, 35–43.
Tao, X.-R., Li, J.-Q., Han, Y.-Y., Duan, P., & Gao, K.-Z. (2020). Discrete imperialist competitive algorithm for the resource-constrained hybrid flowshop problem. Journal of Industrial and Production Engineering, 37(7), 345–359.
Tatar, M., Hatzfeld, D., & Ghafory-Ashtiany, M. (2004). Tectonics of the Central Zagros (Iran) deduced from microearthquake seismicity. Geophysical Journal International, 156(2), 255–266. https://doi.org/10.1111/j.1365-246X.2003.02145.x
Tien Bui, D., Shahabi, H., Shirzadi, A., Chapi, K., Hoang, N.-D., Pham, B. T., Bui, Q.-T., Tran, C.-T., Panahi, M., & Bin Ahmad, B. (2018). A novel integrated approach of relevance vector machine optimized by imperialist competitive algorithm for spatial modeling of shallow landslides. Remote Sensing, 10(10), 1538.
Tokhmechi, B., Rasouli, V., Azizi, H., & Rabiei, M. (2019). Hybrid clustering-estimation for characterization of thin bed heterogeneous reservoirs. Carbonates and Evaporites, 34(3), 917–929.
Vardian, M., Nasriani, H. R., Faghihi, R., Vardian, A., & Jowkar, S. (2016). Porosity and permeability prediction from well logs using an adaptive neuro-fuzzy inference system in a naturally fractured gas-condensate reservoir. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(3), 435–441.
Walia, T., Salami, A. A., Bashiri, R., Hamoodi, O. M., & Rashid, F. (2014). A randomised controlled trial of three aesthetic full-coronal restorations in primary maxillary teeth. Eur J Paediatr Dent, 15(2), 113–118.
Wang, Y., Hong, H., Chen, W., Li, S., Panahi, M., Khosravi, K., Shirzadi, A., Shahabi, H., Panahi, S., & Costache, R. (2019). Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of Environmental Management, 247, 712–729.
Wood, D. A. (2020). Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data. Journal of Petroleum Science and Engineering, 184, 106587.
Zahmatkesh, I., Soleimani, B., Kadkhodaie, A., Golalzadeh, A., & Abdollahi, A.-M. (2017). Estimation of DSI log parameters from conventional well log data using a hybrid particle swarm optimization–adaptive neuro-fuzzy inference system. Journal of Petroleum Science and Engineering, 157, 842–859.
Zhang, G., Wang, Z., Li, H., Sun, Y., Zhang, Q., & Chen, W. (2018). Permeability prediction of isolated channel sands using machine learning. Journal of Applied Geophysics, 159, 605–615.
Zhang, Z., Zhang, H., Li, J., & Cai, Z. (2021). Permeability and porosity prediction using logging data in a heterogeneous dolomite reservoir: An integrated approach. Journal of Natural Gas Science and Engineering, 86, 103743.