سینکرونورتر با قابلیت افزایش میرایی جهت کاهش نوسانات توان و فرکانس در ریز شبکه های مبتنی بر اینورتر
الموضوعات :کامبیز مهردادیان 1 , سید محمد عظیمی 2
1 - دانشگاه صنعتی همدان،دانشکده مهندسی
2 - دانشگاه صنعتی همدان،دانشکده مهندسی
الکلمات المفتاحية: اینرسی, ریزشبکه, سینکرونورتر, قاب چرخان,
ملخص المقالة :
امروزه با پیشرفتهای صورتگرفته در الکترونیک قدرت و تمایل به استفاده از منابع انرژی تجدیدپذیر، ریزشبکهها توسعه قابل توجهی یافتهاند. یکی از حالتهای کاری در ریزشبکه، حالت جزیرهای است که کنترل توان و فرکانس برای منابع تولید پراکنده در این موقعیت با چالشهای بسیاری روبهرو است. با توجه به اين که بسياري از منابع انرژي پراکنده مبتني بر مبدلهای الکترونیک قدرت هستند و این مبدلها برخلاف ژنراتورهای سنکرون فاقد اینرسی میباشند، موضوع کنترل توان و فرکانس در ریزشبکهها یک چالش جدی محسوب میشود. این مسأله سبب ایجاد نوسانات شدید فرکانس در مواقع رخداد تغییرات توان و در مواردی سبب ناپایداری سیستم خواهد شد. در این مقاله، یک ریزشبکه به صورت نمونه، ابتدا با روش قاب چرخان شبیهسازی گردیده و سپس با الگوبرداری از اینرسی در ماشینهای سنکرون، روش کنترلی مناسب با قابلیت افزایش اینرسی مجازی در زمان نوسانات توان و فرکانس در مدل سینکرنورتر با هدف میراسازی نواسانات توان و فرکانس ارائه میشود. در انتها به وسیله شبیهسازی در حوزه زمان در نرمافزار Matlab/Simulink در یک ریزشبکه دارای چند مبدل مبتنی بر اینورتر در حالت جزیره روش پیشنهادی پیادهسازی و با روش کنترل برداری در قاب چرخان تحت سناریوهای مختلف مقایسه میشود.
[1] V. Toro and E. Mojica-Nava, "Droop-free control for networked microgrids," in Proc. IEEE Conf. on Control Applications, CCA’16, pp. 374-379, Buenos Aires, Argentina 19-22 Sept. 2016.
[2] Q. C. Zhong and G. Weiss, "Synchronverters: inverters that mimic synchronous generators," IEEE Trans. on Industrial Electronics, vol. 58, no. 4, pp. 1259-1267, Apr. 2010.
[3] M. Chowdhury, N. Hosseinzadeh, and W. Shen," Smoothing wind power fluctuations by fuzzy logic pitch angle controller," Renewable Energy, vol. 38, no. 1, pp. 224-233, Feb. 2012
[4] J. P. Lopes, S. A. Polenz, C. L. Moreira, and R.Cherkaoui, "Identification of control and management strategies for LV unbalanced microgrids with plugged-in electric vehicles," Electric Power Systems Research, vol. 80, no. 8, pp. 898-906, Aug. 2010.
[5] Z. Xiao-Xiao, X. Ming-chao, H. Xuan-hu, and Z. Yuan, "Study on protection scheme for micro-grid with mobile energy storage units," Procedia Engineering, vol. 16, pp. 192-197, Aug. 2011.
[6] H. Karimi-Davijani and O. Ojo, "Dynamic operation and control of a multi-DG unit standalone microgrid," in Proc. ISGT, 7 pp., Anaheim, CA, USA, 17-19 Jan. 2011.
[7] S. M. Azimi, S. Afsharnia, and S. Lotfifard, "Stabilizer design for heterogeneous types of distributed generators in microgrids operating in a unified control mode," IEEE Systems J., vol. 12, no. 4, pp. 3673-3682, Jul. 2017.
[8] S. M. Azimi and S. Lotfifard, "A nonlinear controller design for power conversion units in islanded micro-grids using interconnection and damping assignment tracking control," IEEE Trans. on Sustainable Energy, vol. 12, no. 1, pp. 284-292, May 2020.
[9] T. L. Vandoorn, B. Meersman, L. Degroote, B. Renders, and L. Vandevelde, "A control strategy for islanded microgrids with dc-link voltage control," IEEE Trans. on Power Delivery, vol. 26, no. 2, pp. 703-713, Jun. 2011.
[10] N. Soni, S. Doolla, and M. C. Chandorkar, "Improvement of transient response in microgrids using virtual inertia," IEEE Trans. on Power Delivery, vol. 28, no. 3, pp. 1830-1838, Jun. 2013.
[11] X. Hou, et al., "Improvement of transient stability in inverter-based AC microgrid via adaptive virtual inertia," in Proc. IEEE Energy Conversion Congress and Exposition, ECCE’16, 6 pp., Milwaukee, WI, USA, 18-22 Sept. 2016.
[12] T. Kerdphol, F. S. Rahman, Y. Mitani, M, Watanabe, and S. K. Kufeoglu, "Robust virtual inertia control of an islanded microgrid considering high penetration of renewable energy," IEEE Access, vol. 6, pp. 625-636, Nov. 2017.
[13] K. Shi, et al., "Virtual inertia control strategy in microgrid based on virtual synchronous generator technology," IEEE Access, vol. 6, pp. 27949-27957, May 2018.
[14] T. Kerdphol, et al., "Enhanced virtual inertia control based on derivative technique to emulate simultaneous inertia and damping properties for microgrid frequency regulation," IEEE Access, vol. 7, pp. 14422-14433, Jan. 2019.
[15] J. A. Adu, et al., "Virtual inertia in a microgrid with renewable generation and a battery energy storage system in islanding transition," in Proc. 1st In. Conf. on Energy Transition in the Mediterranean Area, SyNERGY MED’19, 5 pp., Cagliari, Italy 28-30 May 2019.
[16] P. Bhowmik and P. Rout, "Emulation of virtual inertia with the dynamic virtual damping in microgrids," in Proc. Int. Conf. on Applied Machine Learning, ICAML’19, pp. 130-133, Bhubaneswar, Indi,a 25-26 May 2019.
[17] V. Thomas, S. Kumaravel, and S. Ashok, "Reduction of frequency oscillations in solar PV microgrid using virtual synchronous machine," in Proc. Int. Conf. on Power Electronics Applications and Technology in Present Energy Scenario, PETPES’19, 5 pp., Mangalore, India, 29-31 Aug. 2019.
[18] A. Mojallal, S. Lotfifard, and S. M. Azimi, "A nonlinear supplementary controller for transient response improvement of distributed generations in micro-grids," IEEE Trans. on Sustainable Energy, vol. 11, no. 1, pp. 489-499, Jan. 2019.
[19] R. Majumder, et al., "Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop," IEEE Trans. on Power Systems, vol. 25, no. 2, pp. 796-808, Oct. 2009.
[20] S. M. Azimi and S. Lotfifard, "Supplementary controller for inverter-based resources in weak power grids," IEEE Trans. on Smart Grid, vol. 13, no. 4, pp. 2886-2896, Jul. 2022.
[21] Y. A. -R. I. Mohamed and E. F. El-Saadany, "Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids," IEEE Trans. on Power Electronics, vol. 23, no. 6, pp. 2806-2816, Nov. 2008.
[22] J. M. Uudrill, "Dynamic stability calculations for an arbitrary number of interconnected synchronous machines," IEEE Trans. on Power Apparatus and Systems, vol. 87, no. 3, pp. 835-844, Mar. 1968.
[23] M. N. Marwali and A. Keyhani, "Control of distributed generation systems-part i: voltages and currents control," IEEE Trans. on Power Electronics, vol. 19, no. 6, pp. 1541-1550, Nov. 2004.
[24] M. Prodanovic, "Power quality and control aspects of parallel connected inverters in distributed generation," Jan. 2004.
[25] S. M. Azimi and S. Afsharnia, "Multi-purpose droop controllers incorporating a passivity-based stabilizer for unified control of electronically interfaced distributed generators including primary source dynamics," ISA Trans., vol. 63, pp. 140-153, Jul. 2016.