ﺳﻨﺘﺰ ﺳﻄﺢ ﺑﺎﻻي ﻣﺪارﻫﺎي ﺣﺴﺎﺑﯽ دﻫﺪﻫﯽ ﺑﺮ روي ﻣﻌﻤﺎريﻫﺎي ﻗﺎﺑﻞ ﺑﺎزﭘﯿﮑﺮﺑﻨﺪي درﺷﺖداﻧﻪ
الموضوعات :
1 - دانشگاه سمنان
الکلمات المفتاحية: ﺳﻨﺘﺰ ﺳﻄﺢ ﺑﺎﻻ, ﺣﺴﺎب دﻫﺪﻫﯽ, ﻣﻌﻤﺎريﻫﺎي ﻗﺎﺑﻞ ﺑﺎزﭘﯿﮑﺮﺑﻨﺪي درﺷﺖداﻧﻪ, نگاشت روی سختافزار, اختصاص منابع,
ملخص المقالة :
اﻓﺰاﯾﺶ ﻗﺎﺑﻠﯿﺖﻫﺎي ﻣﺪارﻫﺎي ﻣﺠﺘﻤﻊ و ﭘﯿﭽﯿﺪﮔﯽ ﺑﺮﻧﺎﻣﻪﻫﺎي ﮐﺎرﺑﺮدي، روشﻫﺎ و اﺑﺰارﻫﺎي ﻃﺮاﺣﯽ ﺳﺨﺖاﻓﺰار را ﺑﻪ ﺳﻤﺖ ﺳﻄﻮح ﺑﺎﻻﺗﺮي از اﻧﺘﺰاع ﺳﻮق داده و ﺳﻨﺘﺰ ﺳﻄﺢ ﺑﺎﻻ، ﯾﮑﯽ از ﮐﻠﯿﺪيﺗﺮﯾﻦ ﮔﺎمﻫﺎ در اﻓﺰاﯾﺶ ﺳﻄﺢ اﻧﺘﺰاع میباشد. در ﺳﺎلهای اﺧﯿﺮ، ﺗﺤﻘﯿﻘﺎت ﮔﺴﺘﺮدهاي ﺑﺮاي ﻃﺮاﺣﯽ ﺳﺎﺧﺘﺎرﻫﺎي ﻗﺎﺑﻞ ﺑﺎزﭘﯿﮑﺮﺑﻨﺪي ﺑﺎ ﻫﺪف ﺣﺴﺎب دﻫﺪﻫﯽ ﺻﻮرت ﮔﺮﻓﺘﻪ اﺳﺖ. از آنجا که از یک سو، اﺳﺘﻔﺎده ﻣؤﺛﺮ از اﯾﻦ ﺳﺎﺧﺘﺎرﻫﺎ وابسته ﺑﻪ وﺟﻮد اﻟﮕﻮریتمها و اﺑﺰارﻫﺎي ﻣﻨﺎﺳﺐ ﺟﻬﺖ ﭘﯿﺎدهﺳﺎزي ﻃﺮاﺣﯽ ﺑﺮ روي ﺳﺨﺖاﻓﺰار بوده و از سوی دیگر، ﭘﮋوﻫﺶ در زﻣﯿﻨﻪ ﺗﻮﺳﻌﻪ اﯾﻦ دﺳﺘﻪ از اﻟﮕﻮرﯾﺘﻢﻫﺎ بسیار اندک و محدود بوده است، در این مقاله روشهایی ﺑﺮاي ﺳﻨﺘﺰ ﺧﻮدﮐﺎر ﺗﻮﺻﯿﻒ ﺳﻄﺢ ﺑﺎﻻ از ﻣﺪارﻫﺎي ﺣﺴﺎﺑﯽ دﻫﺪﻫﯽ بر روي ﯾﮏ ﻣﻌﻤﺎري ﻗﺎﺑﻞ ﺑﺎزﭘﯿﮑﺮﺑﻨﺪي درﺷﺖداﻧﻪ اراﺋﻪ خواهد شد. بستر سختافزاری انتخابشده، معماری قابل بازپیکربندی درشتدانه DARA بوده و روشهای پیشنهادشده برای اختصاص منابع در جریان سنتز، شامل دو الگوریتم مکاشفهای و ILP میباشند. نتایج به دست آمده نشان میدهند که مطابق انتظار، برای ابعاد محدود معماری مورد استفاده، الگوریتم ILP به میزان قابل توجهی (حدود 30%) بهتر از الگوریتم مکاشفهای عمل مینماید.
[1] M. Sedighi, F. Haddadi, S. Emami, and M. Saffarpour, "A heuristic algorithm for high level synthesis of decimal arithmetic circuits using systemC," in Proc. 10th Int. Conf. on Design & Technology of Integrated Systems in Nanoscale Era, DTIS'15, 6 pp., Napoli, Italy, 21-23 Apr. 2015.
[2] D. D. Gajski and L. Ramachandran, "Introduction to high-level synthesis," IEEE Design & Test of Computers, vol. 11, no. 4, pp. 44-54, Winter 1994.
[3] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, "An introduction to high-level synthesis," IEEE Design & Test of Computers, vol. 26, no. 4, pp. 8-17, Aug. 2009.
[4] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, "A survey and evaluation of FPGA high-level synthesis tools," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 10, pp. 1591-1604, Oct. 2016.
[5] L. K. Wang, M. A. Erle, C. Tsen, E. M. Schwarz, and M. J. Schulte, "A survey of hardware designs for decimal arithmetic," IBM J. of Research and Development, vol. 54, no. 2, pp. 8:1-8:15, Mar./Apr. 2010.
[6] A. Nannarelli, "FPGA based acceleration of decimal operations," in Proc. Int. Conf. on Reconfigurable Computing and FPGAs, ReConFig'11, Cancun, pp. 146-151, Cancun, Mexico, 30-30 Nov. 2011.
[7] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, "High-level synthesis for FPGAs: from prototyping to deployment," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 4, pp. 473-491, Apr. 2011.
[8] M. A. Shami, Dynamically Reconfigurable Resource Array, Ph.D. Dissertation, KTH Sch. Inf. Tech. Sweden, Kista, 2012.
[9] Y. Kim, R. N. Mahapatra, and K. Choi, "Design space exploration for efficient resource utilization in coarse-grained reconfigurable architecture," IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 10, pp. 1471-1482, Oct. 2010.
[10] S. Emami and M. Sedighi, "An optimized reconfigurable architecture for hardware implementation of decimal arithmetic," Computers & Electrical Engineering, vol. 63, pp. 18-29, Oct. 2017.
[11] M. Vladutiu, "Functional analysis and synthesis of binary and decimal adding and subtracting devices," in Computer Arithmetic Algorithms and Hardware Implementations, Springer Berlin Heidelberg, 2012.
[12] I. D. Castellanos, Analysis and Implementation of Decimal Arithmetic Hardware in Nanometer CMOS technology, Ph.D. Dissertation, Oklahoma State University, USA, 2008.
[13] J. P. Deschamps, G. J. A. Bioul, and G. D. Sutter, Synthesis of Arithmetic Circuits-FPGA, ASIC and Embedded Systems, Wiley-Interscience, 2006.
[14] M. A. Gladshtein, "Algorithmic synthesis of a combinational adder of decimal digits encoded by the Johnson-Mobius code," Automatic Control and Computer Sciences, vol. 43, no. 5, pp. 233-240, 2009.
[15] R. Zimmermann, "Datapath synthesis for standard-cell design," in Proc. of the 19th IEEE Symposium on Computer Arithmetic, pp. 207-211, Portland, OR, USA, 08-10 Jun. 2009.
[16] C. K. Cheng, "Design space exploration for power-efficient mixed-radix ling adders," in Proc. of the 19th IEEE Symp. on Computer Arithmetic, pp. 212-212, Portland, OR, USA, 8-10 Jun. 2009.
[17] A. K. Verma, P. Brisk, and P. Ienne, "Challenges in automatic optimization of arithmetic circuits," in Proc. of the 16th IEEE Symposium on Computer Arithmetic, pp. 213-218, Portland, OR, USA, 8-10 Jun. 2009.
[18] Zimpl, Zuse Institute Mathematical Programming Language, Available at: http://zimpl.zib.de.
[19] SCIP, Solving Constraint Integer Programs, Available at: http://scip.zib.de.
[20] IBM Corporation, The Telco Benchmark, Retrieved May 10, 2022, from: http://speleotrove.com/decimal/telcoSpec.html.