طراحی کنترلکننده میراگر بر پایه مدل شناساییشده با استفاده از دادههای حاصل از اندازهگیرهای فازوری حوزه وسیع
الموضوعات :آذین عطاردی 1 , هیمن گلپیرا 2 , حسن بیورانی 3
1 - دانشگاه کردستان،دانشکده مهندسی
2 - دانشگاه کردستان،دانشکده مهندسی
3 - دانشگاه کردستان،دانشکده مهندسی
الکلمات المفتاحية: سیستمهای پایش و کنترل حوزه وسیع, کنترلکننده میراگر, مد بین ناحیهای, مدل مرتبه پایین,
ملخص المقالة :
تغییرات مداوم و پیچیدگی سیستمهای قدرت مدرن، باعث بروز چالشهایی در زمینه مدلسازی آنها شده است. امروزه با پیشرفت سیستمهای پایش حوزه وسیع، دادههای حاصل از این سیستمها میتوانند در شناسایی و تخمین مدل سیستمهای قدرت به کار روند. این مقاله بر تنظیم پایدارساز سیستم قدرت با استفاده از مدل شناساییشده به کمک اندازهگیریهای فازوری حوزه وسیع تمرکز دارد. مدل مرتبه پایین شناساییشده بر اساس اندازهگیریها دربرگیرنده خصوصیات دینامیکی مدهای غالب بین ناحیهای بوده و میتواند برای طراحی کنترلکننده میراگر و ارزیابی اثربخشی آن در سیستم قدرت واقعی استفاده شود. کنترلکننده از نوع پایدارساز سیستم قدرت انتخاب شده و به دو روش مقاوم و زیگلر- نیکولز طراحی شده است. نتایج عددی، اثربخشی این رویکرد را در بهبود میرایی مد بین ناحیهای سیستم دوناحیهای 4ماشینه با استفاده از دادههای فازوری و دینامیکی به دست آمده از شبیهسازی در نرمافزار MATLAB نشان میدهد.
[1] م. زمانی و غ. شاهقلیان، "طراحی هماهنگ پایدارساز سیستم قدرت و ادوات امپدانس متغیر برای افزایش میرایی مدهای بین ناحیهای با استفاده از الگوریتم ژنتیک،" مهندسی برق و مهندسی کامپیوتر ایران- الف مهندسی برق، سال 17، شماره 4، صص. 278-271، پاییز 1398.
[2] H. Golpira, A. R. Messina, and H. Bevrani, Renewable Integrated Power System Stability and Control, Wiley-IEEE, USA, 2021.
[3] T. Hashiguchi, et al., "Identification of characterization factor for power system oscillation based on multiple synchronized phasor measurements," Electrical Engineering in Japan, vol. 163, no. 3, pp. 10-18, May 2008.
[4] F. Al Hasnain, A. Sahami, and S. Kamalasadan, "An online wide-area direct coordinated control architecture for power grid transient stability enhancement based on subspace identification," IEEE Trans. on Industry Applications, vol. 57, no. 3, pp. 2896-2907, May/Jun. 2021.
[5] S. N. Sarmadi and V. Venkatasubramanian, "Electromechanical mode estimation using recursive adaptive stochastic subspace identification," IEEE Trans. on Power Systems, vol. 29, no. 1, pp. 349-358, Jan. 2013.
[6] H. Liu, et al., "ARMAX-based transfer function model identification using wide-area measurement for adaptive and coordinated damping control," IEEE Trans. on Smart Grid, vol. 8, no. 3, pp. 1105-1115, May 2015.
[7] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed, "Autopilot: adaptive control of distributed applications," in Proc. The Seventh Int. Symp. on High Performance Distributed Computing, pp. 172-179, Chicago, IL, USA, 31-31 Jul.1998.
[8] F. Bai, et al., "Design and implementation of a measurement-based adaptive wide-area damping controller considering time delays," Electric Power Systems Research, vol. 130, no. 2, pp. 1-9, Jan. 2016.
[9] A. Hasanovic, A. Feliachi, N. Bhatt, and A. DeGroff, "Practical robust PSS design through identification of low-order transfer functions," IEEE Trans. on Power Systems, vol. 19, no. 3, pp. 1492-1500, Aug. 2004.
[10] N. Kishor, L. Haarla, J. Turunen, M. Larsson, and S. R. Mohanty, "Controller design with model identification approach in wide area power system," IET Generation, Transmission & Distribution, vol. 8, no. 8, pp. 1430-1443, Aug. 2014.
[11] T. Prakash, V. P. Singh, and S. R. Mohanty, "A synchrophasor measurement based wide-area power system stabilizer design forinter-area oscillation damping considering variable time-delays," International J. of Electrical Power and Energy Systems, vol. 105, pp. 131-141, Feb. 2019.
[12] س. اباذری، ع. عرب دردری، م. برخورداری یزدی و م. ص. پیام، "طراحی کنترلکننده مقاوم محدوده وسیع SVC جهت میرایی نوسانات بین ناحیهای در سیستم قدرت،" مهندسی برق و مهندسی کامپیوتر ایران- الف مهندسی برق، سال 13، شماره 1، صص. 46-36، بهار 1394.
[13] A. Nayak, S. Mishra, J. Hossain, and M. Nizami, "Output feedback adaptive control for inter-area oscillation damping under power system uncertainties," in Proc. IEEE Int. Conf. on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe, EEEIC/I&CPS Europe’19, 6 pp., Genova, Italy, 11-14 Jun. 2019.
[14] A. Nayak, S. Mishra, and S. Mudaliyar, "Adaptive wide area damping control for renewable integrated system," in Proc. IEEMA Engineer Infinite Conf. (eTechNxT), 6 pp., New Delhi, India, 13-14 Mar. 2018.
[15] K. M. Sreedivya, P. Aruna Jeyanthy, and D. Devaraj, "Improved design of interval type-2 fuzzy based wide area power system stabilizer for inter-area oscillation damping," Microprocessors and Microsystems, vol. 83, Article ID: 103957, Jan. 2021.
[16] I. Abdulrahman and G. Radman, "Wide-area-based adaptive neuro-fuzzy SVC controller for damping interarea oscillations," Canadian J. of Electrical and Computer Engineering, vol. 41, no. 3, pp. 133-144, Summer. 2018.
[17] M. E. Bento, "A hybrid particle swarm optimization algorithm for the wide-area damping control design," IEEE Trans. on Industrial Informatics, vol. 18, no. 1, pp. 592-599, Jan. 2022.
[18] J. Zhang, C. Chung, C. Lu, K. Men, and L. Tu, "A novel adaptive wide area PSS based on output-only modal analysis," IEEE Trans. on Power Systems, vol. 30, no. 5, pp. 2633-2642, Sept. 2014.
[19] I. Zenelis and X. Wang, "Wide-area damping control for interarea oscillations in power grids based on PMU measurements," IEEE Control Systems Letters, vol. 2, no. 4, pp. 719-724, Oct. 2018.
[20] L. Zeng, et al., "Design and real-time implementation of data-driven adaptive wide-area damping controller for back-to-back VSC-HVDC," International J. of Electrical Power & Energy Systems, vol. 109, pp. 558-574, Jul. 2019.
[21] C. Lu, Y. Zhao, K. Men, L. Tu, and Y. Han, "Wide-area power system stabiliser based on model-free adaptive control," IET Control Theory & Applications, vol. 9, no. 13, pp. 1996-2007, 27 Aug. 2015.
[22] S. Mukherjee, A. Chakrabortty, H. Bai, A. Darvishi, and B. Fardanesh, "Scalable designs for reinforcement learning-based wide-area damping control," IEEE Trans. on Smart Grid, vol. 12, no. 3, pp. 2389-2401, May 2021.
[23] I. Zenelis and X. Wang, "A model-free sparse wide-area damping controller for inter-area oscillations," International J. of Electrical Power & Energy Systems, vol. 136, Article ID: 107609, Mar. 2022.
[24] X. Zhang, C. Lu, S. Liu, and X. Wang, "A review on wide-area damping control to restrain inter-area low frequency oscillation for large-scale power systems with increasing renewable generation," Renewable and Sustainable Energy Reviews, vol. 57, pp. 45-58, May 2016.
[25] J. C. Mantzaris, A. Metsiou, and C. D. Vournas, "Analysis of inter area oscillations including governor effects and stabilizer design in South-Eastern Europe," IEEE Trans. on Power Systems, vol. 28, no. 4, pp. 4948-4956, Nov. 2013.
[26] Y. Chompoobutrgool, Concepts for Power System Small Signal Stability Analysis and Feedback Control Design Considering Synchrophasor Measurements, Diss. KTH Royal Institute of Technology, 2012.
[27] H. Bevrani, M. Watanabe, and Y. Mitani, Power System Monitoring and Control, John Wiley & Sons, 2014.
[28] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and Control, McGraw-Hill New York, 1994.
[29] C. Rergis, I. Kamwa, R. Khazaka, and A. R. Messina, "A Loewner interpolation method for power system identification and order reduction," IEEE Trans. on Power Systems, vol. 34, no. 3, pp. 1834-1844, May 2018.
[30] V. V. Terzija, "Adaptive underfrequency load shedding based on the magnitude of the disturbance estimation," IEEE Trans. on Power Systems, vol. 21, no. 3, pp. 1260-1266, Aug. 2006.
[31] H. Golpira, H. Bevrani, A. R. Messina, and B. Francois, "A data-driven under frequency load shedding scheme in power systems," IEEE Trans. on Power Systems, p. 1, 10.1109/TPWRS.2022.3172279, Early Access, 2022.