طرح کنترلی توزیع شده مبتنی بر کنترل مدل پیشبین جهت تأمین توان در یک ریزشبکه DC مستقل
الموضوعات :آرش عابدی 1 , بهروز رضایی 2 , علیرضا خسروی 3 , مجید شهابی 4
1 - دانشگاه صنعتی نوشیروانی بابل
2 - دانشگاه صنعتی نوشیرانی بابل
3 - دانشگاه صنعتی نوشیرانی بابل
4 - دانشگاه صنعتی نوشیروانی بابل-دانشکده مهندسی برق و کامپیوتر
الکلمات المفتاحية: ریزشبکه DCکنترل مدل پیشبینتحلیل پایداری لیاپانوف,
ملخص المقالة :
در این مقاله، یک طرح کنترلی جامع برای یک ریزشبکه DC مستقل، شامل توربین بادی متصل به ژنراتور سنکرون مغناطیس دایم، واحد ذخیرهسازی انرژی الکتریکی و بارهای الکتریکی متغیر ارائه گردیده است. منابع انرژی از طریق مبدلهای DC باک و باک- بوست به شین مشترک متصل میباشند. در لایه اول کنترلی کنترلکنندههای توزیعشده محلی قرار دارند. این کنترلکنندهها به واسطه یک تحلیل پایداری لیاپانوف طراحی شده و علاوه بر تضمین پایداری، جریان و ولتاژ تزریقی به شبکه را از طریق کنترل تابع سوئیچینگ مبدلها تنظیم مینمایند. کنترلکنندههای ثانویه به صورت نامتمرکز بوده و میزان مشارکت هر واحد را در تأمین بار تعیین مینمایند. در این لایه کنترلی یک طرح کنترلکننده مدل پیشبین برای نیروگاه بادی پیشنهاد شده است و یک کنترلکننده تناسبی- انتگرالی با هدف تثبیت ولتاژ شین، مقادیر مرجع جریان را برای کنترلکننده محلی تعیین مینمایند. علاوه بر سادگی، سهولت در اجرا و سرعت عمل، استقلال کامل کنترلکنندههای ثانویه و حداقل نیاز به بستر ارتباط داده در کنترلکنندههای محلی و عدم نیاز به تغییر ساختار کنترلی در برنامه توسعه از ویژگیهای مهم طرح کنترلی پیشنهادی میباشند. همچنین صحت عملکرد کنترلکنندهها با شبیهسازی در نرمافزار Matlab و برای موارد مطالعاتی مختلف مورد ارزیابی و تأیید قرار گرفتهاند.
[1] P. A. Owusu and S. Asumadu-Sarkodie, "A review of renewable energy sources, sustainability issues and climate change mitigation," Cogent Engineering, vol. 3, no. 1, Article No.: 1167990, 14 pp., Dec. 2016.
[2] J. J. Justo, F. Mwasilu, J. Lee, and J. W. Jung, "AC-micro-grids versus DC-micro-grids with distributed energy resources: a review," Renewable and Sustainable Energy Reviews, vol. 24, pp. 387-405, Aug. 2013.
[3] C. Chakraborty, H. H. C. Iu, and D. D. C. Lu, "Power converters, control, and energy management for distributed generation," IEEE Trans. on Industrial Electronics, vol. 62, no. 7, pp. 4466-4470, May 2015.
[4] Z. Wang, B. Chen, and J. Wang, "Decentralized energy management system for networked microgrids in grid-connected and islanded modes," IEEE Trans. on Smart Grid, vol. 7, no. 2, pp. 1097-1105, Jun. 2016.
[5] M. Mehrasa, M. E. Adabi, E. Pouresmaeil, and J. Adabi, "Passivity-based control technique for integration of DG resources into the power grid," International J. of Electrical Power & Energy Systems, vol. 58, pp. 281-290, Jun. 2014.
[6] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, "Control of power converters in AC micro-grids," IEEE Trans. on Power Electronics, vol. 27, no. 11, pp. 4734-4749, May 2012.
[7] J. P. Lopes, C. L. Moreira, and A. G. Madureira, "Defining control strategies for micro-grids islanded operation," IEEE Trans. on Power Systems, vol. 21, no. 2, pp. 916-924, May 2006.
[8] F. Dastgeer and H. E. Gelani, "A comparative analysis of system efficiency for AC and DC residential power distribution paradigms," Energy and Buildings, vol. 138, pp. 648-654, Mar. 2017.
[9] S. Fallah, R. Deo, M. Shojafar, M. Conti, and S. Shamshirband, "Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions," Energies, vol. 11, no. 3, Article No.: 596, 31 pp., Mar. 2018.
[10] M. J. Ranaand and M. A. Abido, "Energy management in DC microgrid with energy storage and model predictive controlled AC-DC converter," IET Generation, Transmission & Distribution, vol. 11, no. 15, pp. 3694-3702, Apr. 2017.
[11] J. Han, S. K. Solanki, and J. Solanki, "Coordinated predictive control of a wind/battery microgrid system," IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 1, no. 4, pp. 296-305, Sep. 2013.
[12] M. Rashad, M. Ashraf, A. I. Bhatti, and D. M. Minhas, "Mathematical modeling and stability analysis of DC microgrid using SM hysteresis controller," International J. of Electrical Power & Energy Systems, vol. 95, pp. 507-522, Feb. 2018.
[13] Q. Shafiee, J. M. Guerrero, and J. C. Vasquez, "Distributed secondary control for islanded microgrids-a novel approach," IEEE Trans. on Power Electronics, vol. 29, no. 2, pp. 1018-1031, Feb. 2014.
[14] S. Kotra and M. K. Mishra, "Design and stability analysis of DC microgrid with hybrid energy storage system," IEEE Trans. on Sustainable Energy, vol. 10, no. 3, pp. 1603-1612, Jan. 2019.
[15] D. I. Makrygiorgou and A. T. Alexandridis, "Stability analysis of dc distribution systems with droop-based charge sharing on energy storage devices," Energies, vol. 10, no. 4, Article No.: 433, 14 pp., Apr. 2017.
[16] Q. Fu, et al., "Microgrid generation capacity design with renewables and energy storage addressing power quality and surety," IEEE Trans. on Smart Grid, vol. 3, no. 4, pp. 2019-2027, Dec. 2012.
[17] Q. Shafiee, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, "Hierarchical control for multiple DC-microgrids clusters," IEEE Trans. on Energy Conversion, vol. 29, no. 4, pp. 922-933, Oct. 2014.
[18] J. Pahasa and I. Ngamroo, "Coordinated PHEV, PV, and ESS for microgrid frequency regulation using centralized model predictive control considering variation of PHEV number," IEEE Access, vol. 6, pp. 69151-69161, Nov. 2018.
[19] F. Guo, C. Wen, J. Mao, and Y. D. Song, "Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids," IEEE Trans. on Industrial Electronics, vol. 62, no. 7, pp. 4355-4364, Jul. 2014.
[20] M. Nabatirad, B. Bahrani, and R. Razzaghi, "Decentralized secondary controller in islanded dc microgrids to enhance voltage regulation and load sharing accuracy," in Proc. of IEEE Int. Conf. on Industrial Technology, pp. 1692-1697, Melbourne, Australia, 13-15 Feb. 2019.
[21] Z. Karami, et al., "Decentralized model predictive control of DC microgrids with constant power load," IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 451-460, Feb. 2021.
[22] Y. K. Penya, J. C. Nieves, A. Espinoza, C. E. Borges, A. Pena, and M. Ortega, "Distributed semantic architecture for smart grids," Energies, vol. 5, no. 11, pp. 4824-4843, Nov. 2012.
[23] S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, "Model predictive control for power converters and drives: advances and trends," IEEE Trans. on Industrial Electronics, vol. 64, no. 2, pp. 935-947, Nov. 2016.
[24] J. Y. Dieulot, F. Colas, L. Chalal, and G. Dauphin-Tanguy, "Economic supervisory predictive control of a hybrid power generation plant," Electric Power Systems Research, vol. 127, pp. 221-229, Oct. 2015.
[25] A. M. Dizqah, A. Maheri, K. Busawon, and A. Kamjoo, "A multivariable optimal energy management strategy for standalone DC microgrids," IEEE Trans. on Power Systems, vol. 30, no. 5, pp. 2278-2287, Oct. 2014.
[26] A. Dehghanzadeh, G. Farahani, and M. Maboodi, "Maximum power point tracking of a photovoltaic system using modified incremental algorithm and model predictive control," J. of Control, vol. 12, no. 2, pp. 67-75, Jun. 2018.
[27] X. Zhang, B. Wang, U. Manandhar, H. B. Gooi, and G. Foo, "A model predictive current controlled bidirectional three-level DC/DC converter for hybrid energy storage system in DC microgrids," IEEE Trans. on Power Electronics, vol. 34, no. 5, pp. 4025-4030, Oct. 2018.
[28] G. Lou, W. Gu, W. Sheng, X. Song, and F. Gao, "Distributed model predictive secondary voltage control of islanded microgrids with feedback linearization," IEEE Access, vol. 6, pp. 50169-50178, Sep. 2018.
[29] P. Kou, D. Liang, and L. Gao, "Distributed coordination of multiple PMSGs in an islanded DC microgrid for load sharing," IEEE Trans. on Energy Conversion, vol. 32, no. 2, pp. 471-485, Apr. 2016.
[30] P. Stadler, A. Ashouri, and F. Marechal, "Distributed model predictive control of energy systems in microgrids," in Proc. of Annual IEEE Systems Conf., SysCon’16, 6 pp., Orlando, FL, USA, 18-21 Apr. 2016.
[31] O. Elbeji, M. B. Hamed, and L. Sbita, "PMSG wind energy conversion system: modeling and control," International J. of Modern Nonlinear Theory and Application, vol. 3, pp. 88-97, 18-21 Jan. 2014.
[32] A. Tan, M. B. Camara, and B. Dakyo, "Energy management in the decentralized generation systems based on renewable energy-ultracapacitors and battery to compensate the wind/load power fluctuations," IEEE Trans. on Industry Applications, vol. 51, no. 2, pp. 1817-1827, Sep. 2014.
[33] A. Abedi, B. Rezaie, A. Khosravi, and M. Shahabi, "DC-bus voltage control based on direct Lyapunov method for a converter-based stand-alone DC micro-grid," Electric Power Systems Research, vol. 187, Article No.: 106451, Oct. 2020.
[34] A. Abedi, B. Rezaie, A. Khosravi, and M. Shahabi, "A novel local control technique for converter-based renewable energy resources in the stand-alone DC micro-grids," J. of Renewable Energy and Environment, vol. 7, no. 2, pp. 52-63, Apr. 2020.
[35] J. J. E. Slotine and W. Li, Applied Nonlinear Control (Vol. 199, No. 1). Englewood Cliffs, NJ: Prentice hall, 1991.
[36] E. Fernandez-Camacho and C. Bordons-Alba, "Introduction to model based predictive control," in Model Predictive Control in the Process Industry, Advances in Industrial Control. Springer, London, 1995.
[37] S. Jalili, B. Rezaie, and Z. Rahmani, "A novel hybrid model predictive control design with application to a quadrotor helicopter," Optimal Control Applications and Methods, vol. 39, no. 4, pp. 1301-1322, Jan. 2018.
[38] M. Sarailoo, B. Rezaie, and Z. Rahmani, "Fuzzy predictive control of three-tank system based on a modeling framework of hybrid systems," in Proc. of the Institution of Mechanical Engineering, Part I: J. of System and Control Engineering, vol. 228, no. 6, pp. 369-384, Mar. 2014.
[39] I. Pan and S. Das, "Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO," ISA Trans., vol. 62, pp. 19-29, May 2016.