مدلسازی و کنترل هیبرید سرتاسری مبدل DC-DC باک- بوست به وسیله سیستمهای دینامیکی- منطقی مخلوط
الموضوعات :
1 - دانشگاه صنعتی سهند
الکلمات المفتاحية: سیستمهای هیبریدسیستمهای دینامیکی- منطقی مخلوط توسعهیافته (EMLD)کنترل پیشبینمبدل باک- بوست,
ملخص المقالة :
این مقاله به ارائه یک مدل جدید برای مبدل DC-DC باک- بوست با در نظر گرفتن پدیدههای سوئیچینگ کنترلشده و کنترلنشده در دو مد هدایتی پیوسته و ناپیوسته میپردازد. این مدل بر اساس نظریه سیستمهای هیبرید و با استفاده از مدل سیستمهای دینامیکی- منطقی مخلوط (MLD) و یک نوع بهبودیافته این سیستمها موسوم به سیستمهای دینامیکی- منطقی مخلوط توسعهیافته (EMLD) ارائه میگردد. روش مدلسازی پیشنهادی در مقایسه با مدلهای MLD و EMLD موجود از تعداد متغیرهای گسسته و نامساویهای کمتری برخوردار بوده و در نتیجه منجر به کاهش پیچیدگی در ساختار مسأله بهینهسازی مخلوط و زمان حل آن در کنترلکنندههای پیشبین متناظر میشود. این برتری از طریق مقایسه روش پیشنهادی با کارهای مشابه قبلی و همچنین کنترلکنندههای کلاسیک از نوع تناسبی- انتگرالی (PI) مورد ارزیابی قرار میگیرد. مضاف بر این، چالشهای اثبات پایداری برای سیستم حلقه بسته، مورد بحث قرار گرفته و در این ارتباط، چشماندازهایی برای کارهای تحقیقاتی آینده مطرح شده است. رفتار حالت ماندگار و گذرای سیستم حلقهبسته در رنج وسیعی از نقاط کاری، نشان از عملکرد مطلوب این سبک از مدلسازی و کنترل برای مبدل باک- بوست دارد.
[1] A. van der Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems, London: Springer-Verlag, 1999.
[2] J. Lunze and F. Lamnabhi-Lagarrigue, Handbook of Hybrid Systems Control, Cambridge: Cambridge University Press, 2009.
[3] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic, 2001.
[4] S. Bacha, I. Munteanu, and A. I. Bratcu, Power Electronic Converters Modeling and Control with Case Studies, London: Springer Verlag, 2014.
[5] J. Han, B. Zhang, and D. Qiu, "Unified model of boost converter in continuous and discontinuous conduction modes," IET Power Electronics, vol. 9, no. 10, pp. 2036-2043, Aug. 2016.
[6] J. Han, B. Zhang, and D. Qiu, "Bi-switching status modeling method for DC-DC converters in CCM and DCM operations," IEEE Trans. on Power Electronics, vol. 32, no. 3, pp. 2464-2472, Mar. 2017.
[7] H. Molla-Ahmadian, A. Karimpour, N. Pariz, and F. Tahami, "Hybrid modeling of a DC-DC series resonant converter: direct piecewise affine approach," IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 59, no. 12, pp. 3112-3120, Dec. 2012.
[8] H. Molla-Ahmadian, F. Tahami, A. Karimpour, and N. Pariz, "Hybrid control of DC-DC series resonant converters: the direct piecewise affine approach," IEEE Trans. on Power Electronics, vol. 30, no. 3, pp. 1714-1723, Mar. 2015.
[9] P. Karamanakos, T. Geyer, and S. Manias, "Direct model predictive current control strategy of DC-DC boost converters," IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 4, no. 1, pp. 337-346, Dec. 2013.
[10] P. Karamanakos, T. Geyer, and S. Manias, "Direct voltage control of DC-DC boost converters using enumeration-based model predictive control," IEEE Trans. on Power Electronics, vol. 29, no. 2, pp. 968-978, Dec. 2014.
[11] G. Beccuti, G. Papafotiou, and M. Morari, "Optimal control of the buck DC-DC converter operating in both the continuous and discontinuous conduction regimes," in Proc. of the 45th IEEE Conf. on Decision & Control, pp. 6205-6210, San Diego, CA, USA, 13-15 Dec. 2006.
[12] T. A. F. Theunisse, J. Chai, R. G. Sanfelice, and W. P. M. H. Heemels, "Robust global stabilization of the DC-DC boost converter via hybrid control," IEEE Trans. on Circuits and Systems-I: Regular Papers, vol. 62, no. 4, pp. 1052-1061, Apr. 2015.
[13] M. Hejri and H. Mokhtari, "Global hybrid modeling and control of a buck converter: a novel concept," International J. of Circuit Theory and Applications, John Wiley and Sons, Inc., vol. 37, no. 9, pp. 968-986, Nov. 2009.
[14] M. Hejri and H. Mokhtari, "Hybrid predictive control of a DC-DC boost converter in both continuous and discontinous current modes of operations," Optimal Control, Applications and Methods, vol. 32, no. 3, pp. 270-284, May/Jun. 2011.
[15] M. Hejri and A. Giua, "Hybrid modeling and control of switching DC-DC converters via MLD systems," in Proc. of the IEEE Int. Conf. on Automation Science and Engineering, pp. 714-719, Trieste, Italy, 24-27 Aug. 2011.
[16] M. Hejri and H. Mokhtari, "Hybrid modeling and control of a DC-DC boost converter via extended mixed logical dynamical systems (EMLDs)," in Proc. of the 5th Annual Int. Power Electronics, Drive Systems and Technologies Conf., PEDSTC’14, pp. 373-378, Tehran, Iran, 5-6 Feb. 2014.
[17] A. Bemporad and M. Morari, "Control of systems integrating logic, dynamic and constraints," Automatica, vol. 35, no. 3, pp. 407-427, Mar. 1999.
[18] F. D. Torrisi and A. Bemporad, "HYSDEL-a tool for generating computational hybrid models for analysis and synthesis problems," IEEE Trans. on Control Systems Technology, vol. 12, no. 2, pp. 235-249, Mar. 2004.
[19] M. Hejri, A. Giua, and H. Mokhtari, "On the complexity and dynamical properties of mixed logical dynamical systems via an automaton based discrete-time hybrid automaton," International J. of Robust and Nonlinear Control, vol. 28, no. 16, pp. 4713-4746, 10 Nov. 2018.
[20] C. Bohn and D. P. Atherton, "An analysis package comparing PID antiwindup strategies," IEEE Control Systems Magazine, vol. 15, no. 2, pp. 34-40, Apr. 1995.
[21] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, "Constrained model predictive control: stability and optimality," Automatica, vol. 36, no. 6, pp. 789-814, Jun. 2000.
[22] B. Picasso, S. Pancanti, A. Bemporad, and A. Bicchi, "Receding-horizon control of LTI systems with quantized inputs," IFAC Analysis and Design of Hybrid Systems, vol. 36, no. 6, pp. 259-264, Jun. 2003.
[23] A. Bemporad, "Efficient conversion of mixed logical dynamical systems into an equivalent piecewise affine form," IEEE Trans. on Automatic Control, vol. 49, no. 5, pp. 832-838, May 2004.
[24] M. Lazar, W. P. M. H. Heemels, S. Weiland, and A. Bemporad, "Stabilizing model predictive control of hybrid systems," IEEE Trans. on Automatic Control, vol. 51, no. 11, pp. 1813-1818, Nov. 2006.
[25] P. Sindareh Esfahani and J. K. Pieper, "H∞ model predictive control for constrained discrete-time piecewise affine systems," International J. of Robust and Nonlinear Control, vol. 28, no. 6, pp. 1973-1995, 1 Apr. 2018.
[26] D. Q. Mayne and S. Rakovic, "Model predictive control of constrained piecewise affine discrete-time systems," International J. of Robust and Nonlinear Control, vol. 13, no. 3-4, pp. 261-279, Mar./Apr. 2003.
[27] R. P. Aguilera and D. E. Quevedo, "Stability analysis of quadratic MPC with a discrete input alphabet," IEEE Trans. on Automatic Control, vol. 58, no. 12, pp. 3190-3196, Dec. 2013.
[28] R. P. Aguilera and D. E. Quevedo, "Predictive control of power converters: designs with guaranteed performance," IEEE Trans. on Industrial Informatics, vol. 11, no. 1, pp. 53-63, Feb. 2015.
[29] J. Rodriguez and P. Cortes, Predictive Control of Power Converters and Electrical Drives, John Wiley & Sons, 2012.
[30] T. Geyer, Model Predictive Control of High Power Converters and Industrial Drives, John Wiley & Sons, Inc., 2016.