طبقهبند خودسازمانده هندسی مبتنی بر یادگیری فعال برای نهانکاوی در محیط ویدئو با صرف حداقل برچسب
الموضوعات : electrical and computer engineeringهادی صدوقی یزدی 1 , علی محی الدینی شاهم آبادی پور 2 , مرتضی خادمی 3
1 - دانشگاه فردوسی مشهد
2 - دانشگاه شهید باهنر کرمان
3 - دانشگاه فردوسی مشهد
الکلمات المفتاحية:
ملخص المقالة :
طبقهبند یکی از سه بلوک تشکیلدهنده یک نهانکاو ویدئو است که برای آموزش نیازمند برچسب میباشد. در نهانکاوی کور به دلیل عدم دسترسی به الگوریتمهای نهاننگاری تهیه برچسب مشکل است. در این مقاله از طبقهبند خودسازمانده پویای شبهناظر برای رسیدن به حداقل برچسب استفاده شده و بدین منظور مفهومی به نام افزونگی هندسی گرههای لایه زیرین شبکه خودسازمانده پویای شبهناظر به کار گرفته شده است. نشان داده شده که این افزونگی منجر به ایجاد الگوهای تکراری برای شبکه خواهد شد، پس حذف چنین گرههایی بلامانع است. اثبات شده به دلیل وجود تناظر یک به یک بین گرهها و برچسبها کاهش گرهها منجر به کاهش تعداد برچسب لازم میشود. نکته اساسی این که لازمه وجود افزونگی هندسی در میان تعدادی گره که مفهومی انتزاعی است، تشکیل دسته توسط آنهاست و بنابراین مبنای الگوریتم پیشنهادی شناسایی دستهها و ادغام اعضای آنهاست. طبقهبند به دست آمده بر این مبنا طبقهبند خودسازمانده هندسی نام نهاده شده و اثبات میشود که این طبقهبند میتواند به مقدار بهینه حداقل برچسب دست یابد. نتایج شبیهسازی نشاندهنده برتری چشمگیر طبقهبند نسبت به الگوریتمهای پیشین است.
