بهینهسازی آرایش مزرعه بادی با تأکید بر اثر سایه
الموضوعات :ایوب فرجیپور 1 , فرامرز فقيهي 2 , رضا شریفی 3
1 - دانشگاه آزاد اسلامی پردیس علوم و تحقیقات هرمزگان
2 - دانشگاه آزاد اسلامي، واحد علوم و تحقيقات
3 - دانشگاه آزاد اسلامی واحد تهران غرب
الکلمات المفتاحية: الگوریتمهای بهینهسازی انرژیهای نو توربین بادی مزرعه بادی طراحی جانمایی,
ملخص المقالة :
احداث مزارع بادی برای جذب انرژی باد به عنوان یکی از انرژیهای تجدیدپذیر در سراسر دنیا در حال افزایش است و هدف از بهینهسازی آرایش مزارع بادی جذب حداکثر انرژی از مزارع بادی میباشد. در این مقاله یک الگوریتم ترکیبی جدید برای به حداکثر رساندن انرژی خروجی مورد انتظار، ارائه شده است. هدف الگوریتم کاهش اثر سایه بر اساس مکانهای توربین باد و جهت باد میباشد. مدل پیشنهادی با سناریویی از سرعت باد و جهت توزیع آن از سایت بادی نشان داده شده و با الگوریتم استراتژی تکاملی و الگوریتم مورچگان در شش مرحله جانمایی مقایسه شده است. نتایج نشان میدهد که ترکیب الگوریتم مورچگان و الگوریتم ژنتیک اجرای بهتری را از استراتژیهای موجود بر حسب حداکثر مقادیر انرژی خروجی مورد انتظار و کاهش اثر سایه دربردارد.
[1] Y. Eroglu and S. Seckiner, "Wind farm layout optimization using particle filtering approach," Renew Energy, vol. 58, pp. 95-107, Oct. 2013.
[2] A. Mostafaeipour, et al., "Evaluation of wind energy potential as a power generation source for electricity production in Binalood, Iran," Renew Energy, vol. 52, pp. 222-229, Apr. 2013.
[3] K. Mohammadi, A. Mostafaeipour, and M. Sabzpooshani, "Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran," Energy, vol. 67, pp. 117-128, Apr. 2014.
[4] Y. Eroglu and S. Seckiner, "Design of wind farm layout using ant colony algorithm," Renew. Energy, vol. 44, pp. 53-62, Aug. 2012.
[5] A. Kusiak and Z. Song, "Design of wind farm layout for maximum wind energy capture," Renew. Energy, vol. 35, no. 3, pp. 685-694, Mar. 2010.
[6] M. Wagner, J. Day, and F. Neumann, "A fast and effective local search algorithm for optimizing the placement of wind turbines," Renew Energy, vol. 51, pp. 64-70, Mar. 2013.
[7] E. Son, S. Lee, B. Hwang, and S. Lee, "Characteristics of turbine spacing in a wind farm using an optimal design process," Renew Energy, vol. 65, pp. 245-249, May 2014.
[8] J. C. Mora, J. M. C. Baron, J. M. R. Santos, and M. Burgos, "An evolutive algorithm for wind farm optimal design," Neurocomputing, vol. 70, no. 16-18, pp. 2651-2658, Oct. 2007.
[9] J. S. Gonzales, A. G. G. Rodriguez, J. C. Mora, J. R. Santos, and M. B. Payan, "Optimization of wind farm turbines layout using an evolutive algorithm," Renew. Energy, vol. 35, pp. 1671-1681, Aug. 2010.
[10] M. Bilbao and E. Alba, "Simulated annealing for optimization of wind farm annual profit," in Proc. 2nd Int. Symp. on Logistics and Industrial Informatics, 5 pp., Linz, Austria, 10-12 Sep. 2009.
[11] U. A. Ozturk and A. B. Norman, "Heuristic methods for wind energy conversion system positioning," Electric Power Syst. Res., vol. 70, no. 3?, pp. 179-185, Aug. 2004.
[12] J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained: Theory, Design, and Application, 1st Ed. London, John Wiley & Sons, 2002.
[13] H. E. Neustadter, "Method for evaluating wind turbine wake effects on wind farm performance," J. Solar Energy Eng., vol. 107, pp. 240-243, 1985.
[14] N. O. Jensen, A Note on Wind Generator Interaction, Roskilde, Denmark, RisøeM-2411: Risø National Laboratory, 1983.
[15] I. Katic, J. Hojstrub, and O. N. Jensen, "A simple model for cluster efficiency," in Proc. European Wind Energy Association Conf. and Exhibition, vol. 1, pp. 407-410, Rome, Italy, Oct. 1986.
[16] M. Dorigo, M. Birattari, and T. Stutzle, "Ant colony optimization," IEEE Computational Intelligence Magazine, vol. 1, no. 4, pp. 28-39, Nov. 2006.
[17] K. Socha and C. Blum, "An ant colony optimization algorithm for continuous optimization: application to feed - forward neural network training," Neural Comput Appl., vol. 16, no. 3, pp. 235-247, May 2007.
[18] J. Zhang, S. Chowdhury, A. Messac, and L. Castillo, "A response surface - based cost model for wind farm design," Energy Policy, vol. 42, issue C, pp. 538-550, 2012.