فرستنده- گیرنده يكپارچه نوری مبتنی بر تشدیدگرهای حلقوی
الموضوعات :
1 - دانشگاه آزاد اسلامي واحد تهران جنوب
2 - دانشگاه کاشان
الکلمات المفتاحية: فرستنده- گیرنده يكپارچه نوري آشكارساز نوري تشديدگر حلقوي مدولاتور انعكاسدهنده,
ملخص المقالة :
در اين مقاله يك فرستنده- گیرنده نوري يكپارچه مبتني بر تشديدگرهاي حلقوي بر روي زيرلايه نيمهعايقي InP در طول موج µm 55/1 براي اولين بار طراحي شده است. براي جداسازي طول موجهاي دريافتي شامل موج نوري پيوسته و موج نوري مدولهشده از تشديدگر حلقوي نوري استفاده شده است. تشديدگر حلقوي داراي ساختار pin بوده که علاوه بر جداسازي طول موجهاي دريافتي و ارسالي، وظيفه آشكارسازي طول موجهاي مدولهشده دريافتي را نيز بر عهده دارند. طول موج پيوسته پس از مدولهشدن در مدولاتور حلقوي به سمت يك زوج تشديدگر حلقوي هدايت گرديده تا منعكس شده و به شبكه باز گردد. فاصله كانال بين طول موج دريافتي و طول موج ارسالي (nm 6/1) GHz 200 در محدوده طول موج nm 1570-1520 است. اين فرستنده- گيرنده ميتواند پهناي باند حداقل GHz 40 را نشان دهد.
[1] T. Takeuchi, T. Sassaki, M. Hayashi, K. Hamamoto, K. Makita, K. Taguchi, and K. Komatsu, "A transceiver PIC for bidirectional optical communication fabricated by bandgap energy controlled selective MOVPE," IEEE Photon. Technol. Lett., vol. 8, no. 3, pp. 361-363, Mar. 1996.
[2] S. J. Park, et al., "WDM-PON system based on the laser light injected reflective semiconductor optical amplifier," Optical Fiber Technology, vol. 12, no. 2, pp. 162-169, Apr. 2006.
[3] J. Prat, C. Arellano, V. Polo, and C. Bock, "Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks," IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 250-252, Jan. 2005.
[4] L. Xu, Monolithic Integrated Reflective Transceiver in Indium Phosphide, Ph. D. Dissertation, the Netherlands, 2009.
[5] D. Caprioli et al., "A 10 Gb/s traveling-wave MZ modulator for integration with a laser," in Proc. 11th European Conf on Integrated Optics, ECIO'03, vol. 1, pp. 145-148, 2000.
[6] J. H. den Besten, R. G. Broeke, M. van Geemert, J. J. M. Binsma, F. Heinrichsdorff, T. van Dongen, E. A. J. M. Bente, X. J. M. Leijtens, and M. K. Smit, "Compact digitally tunable seven-channel ring laser," IEEE Photon. Technol. Lett., vol. 14, no. 6, pp. 753-755, Jun. 2002.
[7] L. Xu, M. et al., "High bandwidth waveguide photodetector based on an amplifier layer stack on an active-passive semi-insulating InP at 1.55 μm," IEEE Photonics Technol. Lett., vol. 20, no. 23, pp. 1941-1943, Dec. 2008.
[8] G. Abaeiani, V. Ahmadi, and K. Saghafi, "Design and analysis of resonant cavity enhanced waveguide photodetectors for microwave photonics applications," IEEE Photonics Technol. Lett., vol. 18, no. 15, pp. 1597-1599, Aug. 2006.
[9] M. Nikoufard, Integrated Wavelength Division Multiplexing Receivers, Ph. D. Dissertation, the Netherlands, 2008.
[10] D. G. Rabus, "Integrated ring resonators: the compendium," Springer, Berlin, 2007.
[11] http://www.comsol.com
[12] K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Ctyroky, "Analytic approach to dielectric optical bent slab waveguides," Optical and Quantum Electronics, vol. 37, no. 1, pp. 37-61, Jan. 2004.
[13] P. Maat, InP-Based Integrated MZI Switches for Optical Communication, Ph. D. Dissertation, Delft University of Technology, the Netherland, 2001.
[14] A. Yick, Metal-Free Electro-Optic Polymer Modulators and Sensors, Ph.D. Dissertation, University of Southern California, USA, 2007.
[15] http://www.optiwave.com
[16] http://www.silvaco.com