يک روش جديد براي کاهش ريپل ولتاژ DC توسط فيلتر فعال
الموضوعات :سیدمحمد دهقان دهنوی 1 , علی یزدیان ورجانی 2 , مصطفی محمدیان 3
1 - دانشگاه تربیت مدرس
2 - دانشگاه تربیت مدرس
3 - دانشگاه تربیت مدرس
الکلمات المفتاحية: حذف نویز فعالريپل ولتاژشبکه DCفيلتر فعال قدرت,
ملخص المقالة :
وجود نوسانات و ريپل ولتاژ و جريان در شبکههاي DC باعث عملکرد نادرست سيستمهاي تغذيهشونده توسط اين شبکهها ميشوند، بنابراين کاهش ريپل ولتاژ و جريان در شبکههای DC از اهميت بالايي برخوردار است. در اين مقاله يک روش نوين براي حذف ريپل ولتاژ DC در سيستمهاي توان بالا، با استفاده از فيلتر فعال حذف نويز قدرت APNCF به همراه فيلتر ايستا ارائه گرديده است. در اين روش از يک سيستم ترکيبي شامل فيلتر فعال سري براي کاهش ريپل ولتاژ بار و فيلتر فعال موازي براي کاهش ريپل جريان در طرف منبع، به همراه فيلتر ايستا استفاده شده است. نتايج شبيهسازي و آزمايشگاهي درستي عملکرد روش پيشنهادي را در شرايط ماندگار و گذرا نشان ميدهند.
[1] W. Zhang et al., "Active DC filter for HVDC system: test installation in Konti-Skan DC link at Lindome converter station," IEEE Trans. on Power Delivery, vol. 8, no. 3, pp. 1599-1606, Jul. 1993.
[2] L. J. Xiao and L. Zhang, "Harmonic cancellation for HVDC systems using a notch filter controlled active DC filter," in IEE Proceedings Gener. Transm. Distrib., vol. 147, no. 3, pp. 176-181, May 2000.
[3] D. Zhao, J. Chen, Z. Wang, and Y. Wang, "An approximate inverse system control based active DC filter applied in HVDC," in Proc. 35th Annual IEEE Power Electronic Specialists Conf., vol. 1, pp. 765-770, Germany, Jun. 2004.
[4] Y. Wang, G. Joos, and H. Jin, "DC - side shunt-active power filter for phase-controlled magnet-load power supplies," IEEE Trans. on Power Electronics, vol. 12, no. 5, pp. 765-771, Sep. 1997.
[5] G. Xiao, Y. Pei, K. Li, and Z. Wang, "A novel control approach to the DC active power filter used in low ripple and large stable/pulse power supply," in Proc. 34th Annual IEEE Power Electronic Specialists Conf., vol. 4, pp. 1489-1493, Jun. 2003.
[6] K. Li, G. Xiao, J. Liu, and Z. Wang, "New control scheme for series DC active power filter coupled by transformers applied to high performance magnet power supplies," in Proc. Power Electronic and Motion Control Conf., vol. 2, pp. 462-467, Aug. 2004.
[7] P. A. Ioannou and J. Sun, Robust Adaptive Control. Englewood Cliffs, NJ: Prentice - Hall, 1996.
[8] K. J. Astrom and B. Wittenmark, Computer - Controlled Systems: Theory and Design. Upper Saddle River, NJ: Prentice - Hall, 1997.
[9] C. Rech, H. Grundling, H. Pinheiro, "A modified discrete control law for UPS application," in Proc. 31th Annual IEEE Power Electronic Specialists Conf., vol. 3, pp. 1476 - 1481, 2000.
[10] H. A. Grundling, E. G. Carati, and J. R. Pinheiro, "A robust model reference adaptive controller for UPS applications," in Proc. IEEE Industrial Electronics Conf., vol. 2, pp. 901-905, Nov. 1997.
[11] C. Rech, H. Pinheiro, and H. Grundling, "Comparison of digital control techniques with repetitive integral action for low cost PWM inverters," IEEE Trans. on Power Electronics, vol. 18, no. 1, pt. 2, pp. 401-410, Jan. 2003.
[12] M. Sedighy, S. B. Dewan, and F. P. Dawson, "A robust digital current control method for active power filters," IEEE Trans. on Industry Applications, vol. 36, no. 4, pp. 1158-1164, Jul./Aug. 2000.
[13] L. Malesani, P. Mattaveli, and S. Buso, "Robust dead-beat current control for PWM rectifiers and active filters," IEEE Trans. on Industry Applications, vol. 35, no. 3, pp. 613-620, May/Jun. 1999.
[14] The MathWorks, Inc. Using Simulink. Version 6, 2004.
[15] M. H. Rashid, Power Electronics: Circuits, Devices and Applications, 3rd ed., Upper Saddle River, NJ: Pearson Education, 2003.