مروری برکاربردها، فرایندهای طراحی و ساخت فرامواد با استفاده از فنون تولید افزایشی و چاپگرهای سه بعدی
الموضوعات :
1 - مهندسي مكانيك
الکلمات المفتاحية: فرامواد, تولید افزایشی, طراحی و ساخت, چاپگر سه بعدی, بهینه سازی توپولوژی,
ملخص المقالة :
در این مقاله، مروری بر فرایندهای طراحی و ساخت فرامواد با استفاده از فنون تولید افزایشی و چاپگر های سه بعدی، پرداخته شده است. در ادامه نیز، به کاربردهای این گونه مواد در قالب مهندسی مکانیک جامدات و شاخه های مرتبط با آن، اشاره شده است. در اولین گام، طراحی این گونه فرامواد می تواند با استفاده از بهینه سازی توپولوژی به صورت نرم افزاری به همراه روش اجزای محدود انجام پذیرد. تابع هدف برای بهینه سازی ریاضی، معمولاً خواص غیرمعمول ماده همچون ضریب پواسون صفر یا منفی و ضریب انبساط حرارتی صفر یا منفی است. پس از تعیین شکل و هندسه پیچیده آن ها، به کمک روش های ساخت افزایشی و چاپگر های سه بعدی، فرامواد پلیمری، قابل ساخت هستند.
1. Askari M., Hutchins D.A., Thomas P.J., Astolfi L., Watson R.L., Abdi M., Ricci M., Laureti S., Nie L., Freear S., Wildman R., Tuck C., Clarke M., Woods E., Clare A.T., Additive Manufacturing of Metamaterials: A review, Additive Manufacturing, 36, 101562, 2020.
2. Cai W., Shalaev V., Optical Metamaterials: Fundamentals and Applications, Springer, USA, 2010.
3. Xie Y., Ye S., Reyes C., Sithikong P., Popa B.I., Wiley B.J., Cummer S.A., Microwave Metamaterials Made by Fused Deposition 3D Printing of a Highly Conductive Copper-based Filament, Applied Physics Letters, 110, 181903, 2017.
4. Hedayati M.K., Javaherirahim M., Mozooni B., Abdelaziz R., Tavassolizadeh A., Chakravadhanula V.S.K., Zaporojtchenko V., Strunkus T., Faupel F., Elbahri M., Design of A Perfect Black Absorber at Visible Frequencies using Plasmonic Metamaterials, Advanced Materials, 23, 5410-5414, 2011.
5. Hermatschweiler M., Ledermann A., Ozin G.A., Wegener M., Von Freymann G., Fabrication of Silicon Inverse Woodpile Photonic Crystals, Advanced Functional Materials, 17, 2273-2277, 2007.
6. Staude I., Thiel M., Essig S., Wolff C., Busch K., Von Freymann G., Wegener M., Fabrication and Characterization of Silicon Woodpile Photonic Crystals with a Complete Bandgap at Telecom Wavelengths, Optical Letters, 35, 1094-1096, 2010.
7. Joannopoulos J.D., Villeneuve P.R., Fan S., Photonic Crystals: Putting A New Twist on Light, Nature, 386, 143-149, 1997.
8. Ziolkowski R.W., Heyman E., Wave Propagation in Media Having Negative Permittivity and Permeability, Physics Review E, 64, 15, 2001.
9. Engheta N., Ziolkowski R.W., Metamaterials: Physics and Engineering Explorations, John Wiley and Sons, USA, 2006.
10. Di Falco A., Ploschner M., Krauss T.F., Flexible Metamaterials at Visible Wavelengths, New Journal of Physics, 12, 113006, 2010.
11. Kruisova A., Sevcík M., Seiner H., Sedlak P., Roman-Manso B., Miranzo P., Belmonte M., Landa M., Ultrasonic Bandgaps in 3D-Printed Periodic Ceramic Microlattices, Ultrasonics, 82, 91-100, 2018.
12. Fu X.F., Li G.Y., Lu M.H., Lu G., Huang X., A 3D Space Coiling Metamaterial with Isotropic Negative Acoustic Properties, Applied Physics Letters, 111 , 2017.
13. Moleron M., Serra-Garcia M., Daraio C., Acoustic Fresnel Lenses with Extraordinary Transmission, Applied Physics Letters, 105, 114109, 2014.
14. Frenzel T., Kadic M., Wegener M., Three-Dimensional Mechanical Metamaterials with a Twist, Science, 358, 1072-1074, 2017.
15. Kadic M., Buckmann T., Schittny R., Gumbsch P., Wegener M., Pentamode Metamaterials with Independently Tailored Bulk Modulus and Mass Density, Applied Physics Reviews, 2, 054007, 2014.
16. Wang Q., Jackson J.A., Ge Q., Hopkins J.B., Spadaccini C.M., Fang N.X., Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion, Physics Review Letters, 117, 175901, 2016.
17. Bauer J., Hengsbach S., Tesari I., Schwaiger R., Kraft O., High-Strength Cellular Ceramic Composites with 3D Microarchitecture, Proceedings of the National Academy of Sciences, 111, 2453-2458, 2014.
18. Liu K., Han L., Hu W., Ji L., Zhu S., Wan Z., Yang X., Wei Y., Dai Z., Zhao Z., Li Z., Wang P., Tao R., 4D Printed Zero Poisson's Ratio Metamaterial with Switching Function of Mechanical and Vibration Isolation Performance, Materials and Design, 196, 109153, 2020.
19. Wei Y.L., Yang Q.S., Ma L.H., Tao R., Shang J.J., Design and Analysis of 2D/3D Negative Hydration Expansion Metamaterial Driven by Hydrogel, Materials and Design, 1196, 109084, 2020.
20. Wei Y.L., Yang Q.S., Tao R., SMP-based Chiral Auxetic Mechanical Metamaterial with Tunable Bandgap Function, International Journal of Mechanical Sciences, 195, 106267, 2021.
21. Zhao W., Zhu J., Liu L., Leng J., Liu Y., Analysis of Small-Scale Topology and Macro-Scale Mechanical Properties of Shape Memory Chiral-Lattice Metamaterials, Composite Structures, 262, 113569, 2021.
22. Ye M., Li H., Cai X., Gao L., Zhang A., Zhao Z., Progressive Design of Gradually Stiffer Metamaterial using Surrogate Model, Composite Structures, 264, 113715, 2021.
23. Zheng X., Guo X., Watanabe, A Mathematically Defined 3D Auxetic Metamaterial with Tunable Mechanical and Conduction Properties, Materials and Design, 198, 109313, 2021.
24. Wei K., Xiao, X., Chen J., Wu Y., Li M., Wang Z., Additively Manufactured Bi-Material Metamaterial to Program a Wide Range of Thermal Expansion, Materials and Design, 198, 109343, 2021.
25. Alvarez-Trajo A., Cuan-Urquizo E., Roman-Flores A., Trapaga-Martinez L.G., Alvardo-Orzco J.M. Bezier-based Metamaterials: Synthesis, Mechanics and Additive Manufacturing, Materials and Design, 199, 109412, 2021.
26. Hu W., Ren Z., Wan Z., Qi D., Cao X., Li Z., Wu W., Tao R., Li Y., Deformation Behavior and Band Gap Switching Function of 4D Printed Multi-Stable Metamaterials, Materials and Design, 200, 109481, 2021.
27. Garland A.P., White B.C., Jensen S.C., Boyce B.L., Pragmatic Generative Optimization of Novel Lattice Metamaterials with Machine Learning, Materials and Design, 203, 109632, 2021.
28. Meza L.R., Greer J.R., Mechanical Characterization of Hollow Ceramic Nanolattices, Journal of Materials Science, 49, 2496-2508, 2014.
29. Li T., Hu X., Chen Y., Wang L., Harnessing Out-of-Plane Deformation to Design 3D Architected Lattice Metamaterials with Tunable Poisson’s Ratio, Science Reports, 7, 8949, 2017.
30. Clausen A., Wang F., Jensen J.S., Sigmund O., Lewis J.A., Topology Optimized Architectures with Programmable Poisson’s Ratio over Large Deformations, Advanced Materials, 27, 5523-5527, 2015.
31. White B.C., Garland A., Alberdi R., Boyce B.L., Interpenetrating Lattices with Enhanced Mechanical Functionality, Additive Manufacturing, 38, 101741, 2021.
32. Yuan X., Chen M., Yao Y., Guo X., Huang Y., Peng Z., Xu B., Lv B., Tao R., Duan S., Liao J., Yao K., Li Y., Lei H., Chen X., Hong G., Fang D., Recent Progress in The Design and Fabrication of Multifunctional Structures based on Metamaterials, Current Opinion in Solid State and Materials Science, 25, 100883, 2021.