مروری بر روش های اندازه گیری سریع مقاومت در برابر رشد آهسته ترک پلی اتیلن سنگین
الموضوعات :
1 - مهندسي پليمر
الکلمات المفتاحية: رشد آهسته ترک, آزمون کشش, مدول سخت شونده با کرنش, نسبت کشش طبیعی,
ملخص المقالة :
یکی از بزرگ ترین مشکلات گریدهایمختلف پلی اتیلندر استفاده طولانی مدت آن در کاربردهای مختلف، مقاومت کم آن در برابر ترک خوردگی در اثر تنش های محیطی (ESCR) است. روش های مختلفی مانند آزمون نوار خمیدهبه منظور اندازه گیری ESCRپلی اتیلن ها ارائه شده است. اما این آزمون ها علاوه بر طولانی مدت بودن، از دقت و تکرارپذیری مطلوبی برخوردار نیستند. به همین منظور در سال های اخیر، دو آزمون سخت شونده با کرنش (SHT) ونسبت کشش طبیعی(NDR)برایاندازه گیری سریع ESCRمعرفی شده است. نتایج آزمون نوار خمیده با مدول سخت شونده با کرنش در آزمون SHT رابطه مستقیم و با NDR رابطه معکوس دارد.اثر ریزساختار پلی اتیلن مانند جرم مولکولی، میزان شاخه ها و نوع کومونومر بر میزان مقاومت به رشد ترک توسط آزمون های SHT و NDRمی تواند به خوبی ارزیابی شود. البته ارزیابی یکنواختی شبکه زنجیرهای رابط،توسط دو آزمون پنت و خزش شکاف کامل نسبت به آزمون SHT، آسان تر است. به دلیل نسبت کشش بیش از 8 در آزمون SHT، تنها ESCRگریدهای پلی اتیلن مقاوم در برابر رشد ترک می توانند اندازه گیری شوند.
1. Hurley B. R. A., Ouzts A., Fischer J., and Gomes T., Effects of Private and Public Label Packaging on Consumer Purchase Patterns, Packag. Technol. Sci., 29, 399–412, 2013.
2. Deveci S. and Fang D., Correlation of Molecular Parameters, Strain Hardening Modulus and Cyclic Fatigue Test Performances of Polyethylene Materials for Pressure Pipe Applications, Polym. Test., 62, 246–253, 2017.
3. Kratochvilla T. R. U., Muschik H., and Dragaun H., Experiences with Modified Test Conditions for Notch Pipe Testing, Polym. Test., 27, 158–160, 2008.
4. Fleissner M., Experience with a Full Notch Creep Test in Determining the Stress Crack Performance of Polyethylenes, Polym. Eng. Sci., 38, 330–340, Feb. 1998.
5. Domínguez C., Robledo N., Paredes B., and García-muñoz R. A., Strain Hardening Test on the Limits of Slow Crack Growth Evaluation in High Resistance Polyethylene Resins: Effect of Comonomer Type, Polym. Test., 106155, 2019.
6. Nezbedová E., Pinter G., Frank A., Hutař P., Poduška J., and Hodan J., Accelerated Tests for Lifetime Prediction of PE-HD Pipe Grades, Macromol. Symp., 373, 1600096, 2017.
7. Robledo N., Domínguez C., and García-Muñoz R. A., Alternative Accelerated and Short-Term Methods for Evaluating Slow Crack Growth in Polyethylene Resins with High Crack Resistance, Polym. Test., 62, 366–372, 2017.
8. Deslauriers P. J., Lamborn M. J., and Fodor J. S., Correlating Polyethylene Microstructure to Stress Cracking; Correlations to Post Yield Tensile Tests, Polymer (Guildf)., 2018.
9. Deveci S., Kaliappan S. K., Fawaz J., and Gadgoli U., Sensitivity of Strain Hardening Modulus To Molecular Structure of Polyethylene, 1–8, 2018.
10. Sardashti P., Stewart K. M. E., Polak M., Tzoganakis C., and Penlidis A., Operational Maps between Molecular Properties and Environmental Stress Cracking Resistance, J. Appl. Polym. Sci., 47006, 1–10, 2018.
11. Gobetti A. and Ramorino G., Application of Short ‑Term Methods to Estimate the Environmental Stress Cracking Resistance of Recycled HDPE, J. Polym. Res., 2020.
12. Deslauriers P. J., Lamborn M. J., and Fodor J. S., Correlating Polyethylene Microstructure to Stress Cracking; Correlations to Post Yield Tensile Tests, Polymer (Guildf)., 153, 422–429, 2018.
13. Van Der Stok E. J. W., Testing Parameters Influencing the Strain Hardening Modulus Design of Experiments, Proc. 19 th Plast. Pipes Conf. PPXIX, 1–10, 2018.
14. Van Beek R. D. D.J.M., Strain Hardening: An Elegant and Fast Method to Predict the Slow Crack Growth Behavior of HDPE Pipe Materials, in EUROTEC® 2011 - Society of Plastics Engineers, 128, 2011.
15. “ISO 18488:2015 - Polyethylene (PE) Materials for Piping Systems - Determination of Strain Hardening Modulus in Relation to Slow Crack Growth - Test Method.” [Online]. Available: https://www.iso.org/standard/62592.html. [Accessed: 17-Oct-2018].
16. He X., Wang Y., Wang Q., Tang Y., and Liu B., Effects of Addition of Ultra-High Molecular Weight Polyethylene on Tie-Molecule and Crystallization Behavior of Unimodal PE-100 Pipe Materials, J. Macromol. Sci. Part B, 2348, 2017, 2016.
17. Zhang C., Zhao B., Ding L., Zhang D., and Yang F., Influence of Comonomer Distribution on Crystallization Kinetics and Performance of Polyethylene of Raised Temperature Resistance, Polym. Int., 68, 2019.
18. Fodor J. S., Deslauriers P. J., Lamborn M. J., and Hamim S. U., Further Investigation of the Relationship between Polymer Structure and HDPE Post Yield Properties, Polymer (Guildf)., 180, 121730, 2019.
19. Taylor P., Cheng J. J., Polak M. A., and Penlidis A., A Tensile Strain Hardening Test Indicator of Environmental Stress Cracking Resistance, J. Macromol. Sci. Part A Pure Appl. Chem., 37–41, 2014.
20. Sukhadia A. M., Assessing the Slow Crack Growth Resistance of Polyethylene Resins and Pipe Service, Chevron Phillips Chem. Co., 2010.
21. Suleyman Deveci S. K. K., Fawaz J., GadgoliU., Sensitivity of Strain Hardening Modulus To, in Proceedings of 19th International Plastic Pipes Conference , Las Vegas, NV, USA, 2018.
22. Deveci S., Kaliappan S. K., Fawaz J., Gadgoli U., and Das B., Sensitivity of Post Yield Axial Deformation Properties of High-Density Ethylene/α-olefin Copolymers in Relation to Molecular Structure and Slow Crack Growth Resistance, Polym. Test., 72, 285–297, 2018.
23. Sardashti P., Tzoganakis C., Polak M. A., and Penlidis A., Improvement of Hardening Stiffness Test as an Indicator of Environmental Stress Cracking Resistance of Polyethylene, J. Macromol. Sci. Part A, 49, 689–698, 2012.
24. Wang Z., Zhai W., Yang B., Xin M., Li M., and Yin X. B., Polyethylene Resins Slow Crack Growth Testing Based on Strain Hardening Modulus and Crystallinity, in Proceedings - 2020 3rd International Conference on Electron Device and Mechanical Engineering, ICEDME 2020, 569–572.
25. Dominguez R. A. G. C., Perez A., Robledo N., Gonzalez C., Paredes B., Evaluation and Comparison of Standard and Accelerated Slow Crack Growth Determination Methodologies: Effect of the Comonomer Type influence, in Plastic Pipes XIXLas Vegas, Nevada, 2018.
26. Fawaz J., Deveci S., and Mittal V., Molecular and Morphological Studies to Understand Slow Crack Growth (SCG) of Polyethylene, Colloid Polym. Sci., 294, 1269–1280, 2016.
27. Cheng J. J., Polak M. A., and Penlidis A., A Tensile Strain Hardening Test Indicator of Environmental Stress Cracking Resistance, J. Macromol. Sci. Part A, 45, 599–611, 2008.
28. Cheng J. J., Polak M. A., and Penlidis A., Influence of Micromolecular Structure on Environmental Stress Cracking Resistance of High Density Polyethylene, Tunn. Undergr. Sp. Technol., 26, 582–593, 2011.