بهينه سازي مسائل حمل و نقل حوزه مديريت شهري با استفاده از مسئله جهت يابي با افق زماني وابسته
الموضوعات :مهدی جعفریان 1 , عزیزاله جعفری 2 , رامین ُصادقیان 3
1 - گروه مهندسي صنايع، دانشگاه پيام نور، تهران، ايران
2 - گروه مهندسي صنايع، دانشکده فني و مهندسي، دانشگاه علم و فرهنگ، تهران، ايران
3 - گروه مهندسي صنايع، دانشگاه پيام نور، تهران، ايران
الکلمات المفتاحية: مديريت شهري حمل و نقل شهري مسئله جهت يابي,
ملخص المقالة :
مدل سازي و ارائه رويکردهاي حل جهت بهينه سازي اقتصادي و زماني مسائل مختلف موجود در حوزه حمل و نقل شهري از مهمترين و پرچالش ترين مباحث موجود در فضاي برنامه ريزي و مديريت شهري است. طيف وسيعي از پژوهش هاي داخلي و خارجي، مسائلي از جمله حمل و نقل هاي عمومي و مديريت ترافيک شهري، جمع آوري و مديريت پسماند، امداد و نجات و حتي گردشگري شهري را در اين حوزه مد نظر قرار مي دهند و معتقدند ماحصل چنين پژوهش هايي کاهش چشمگير هزينه ها، افزايش سرعت و تسهيل جابجايي ها در شهر، کاهش آلودگي ها و مضرات زيست محيطي و حرکت به سمت پايدارسازي شهرها مي باشد. از اين رو مقاله حاضر حالت خاصي از مسئله کلاسيک و مشهور جهت يابي را که از قابليت تطبيق بالايي با مسائل حمل و نقل شهري برخوردار بوده و در آن افق زماني متاثر از وقايع، اتفاقات و شرايط بوجود آمده حين بازديد هر يک از رئوس مي باشد، مدل سازي نموده و با استفاده از يک الگوريتم ابتکاري مبتني بر مفاهيم حريصانه به حل آن پرداخته است. به منظور بررسي نحوه عملکرد الگوريتم، تعداد 85 مسئله تصادفي در 7 دسته توليد شده و الگوريتم پيشنهادي جهت حل اين مسائل بکار گرفته شده اند.
[1] Vansteenwegen, P., W. Souffriau, and D. VanOudheusden, The orienteering problem: A survey. European Journal of Operational Research, 2011. 209(1): p. 1-10.
[2] Gunawan, A., H.C. Lau, and P. Vansteenwegen, Orienteering problem: A survey of recent variants, solution approaches and applications. European Journal of Operational Research, 2016. 255(2): p. 315-332.
[3] Tricoire, F., et al., Heuristics for the multi-period orienteering problem with multiple time windows. Computers & Operations Research, 2010. 37(2) p. 351-367.
[4] Tsiligirides, T., Heuristic methods applied to orienteering. Journal of the Operational Research Society, 1984: p. 797-809.
[5] Golden, B.L., L. Levy, and R. Vohra, The orienteering problem. Naval research logistics, 1987. 34(3): p. 307-318.
[6] Bovet, J. The selective traveling salesman problem. in EURO VI Conference, Vienna. 1983.
[7] Fischetti, M. and P. Toth, An additive approach for the optimal solution of the prize collecting traveling salesman problem. Vehicle Routing: Methods and Studies, 1988: p. 319-343.
[8] Kataoka, S. and S. Morito, An algorithm for single constraint maximum collection problem. J. OPER. RES. SOC. JAPAN., 1988. 31(4): p. 515-530.
[9] Balas, E., The prize collecting traveling salesman problem. Networks, 1989. 19(6): p. 621-636.
[10] Hayes, M. and J. Norman, Dynamic programming in orienteering: route choice and the siting of controls. Journal of the Operational Research Society, 1984: p. 791-796.
[11] Kantor, M.G. and M.B. Rosenwein, The orienteering problem with time windows. Journal of the Operational Research Society, 1992: p. 629-635.
[12] Righini, G. and M. Salani, Decremental state space relaxation strategies and initialization heuristics for solving the orienteering problem with time windows with dynamic programming. Computers & Operations Research, 2009. 36(4): p. 1191-1203.
[13] Gunawan, A., H.C. Lau, and K. Lu. An iterated local search algorithm for solving the orienteering problem with time windows. in European Conference on Evolutionary Computation in Combinatorial Optimization. 2015. Springer.
[14] Aghezzaf, B. and H. El Fahim, Iterated local search algorithm for solving the orienteering problem with soft time windows. SpringerPlus, 2016. 5(1): p. 1781.
[15] Gunawan, A., Z. Yuan, and H.C. Lau. A mathematical model and metaheuristics for time dependent orienteering problem. 2014. PATAT.
[16] Verbeeck, C., P. Vansteenwegen, and E.-H. Aghezzaf. The orienteering problem with time-dependent stochastic travel times. in Verolog 2014. 2014.
[17] Gavalas, D., et al. Efficient heuristics for the time dependent team orienteering problem with time windows. in International Conference on Applied Algorithms. 2014. Springer.
[18] Gavalas, D., et al., Heuristics for the time dependent team orienteering problem: Application to tourist route planning. Computers & Operations Research, 2015. 62: p. 36-50.
[19] Sun, P., et al., The Time-Dependent Pro_table Pickup and Delivery Traveling Salesman Problem with Time Windows. Eindhoven University of Technology, 2015.
[20] Verbeeck, C., P. Vansteenwegen, and E.-H. Aghezzaf, Solving the stochastic time-dependent orienteering problem with time windows. European Journal of Operational Research, 2016. 255(3): p. 699-718.
[21] Tricoire, F., et al. Algorithms for the multi-period orienteering problem with multiple time windows. in EU/MEeting 2008: Workshop on Metaheuristics for Logistics and Vehicle Routing, paper. 2008.
[22] Campbell, A.M., M. Gendreau, and B.W. Thomas, The orienteering problem with stochastic travel and service times. Annals of Operations Research, 2011. 186(1): p. 61-81.
[23] Varakantham, P. and A. Kumar. Optimization approaches for solving chance constrained stochastic orienteering problems. in International Conference on Algorithmic DecisionTheory. 2013. Springer.
[24] Zhang, S., J.W. Ohlmann, and B.W. Thomas, A priori orienteering with time windows and stochastic wait times at customers. European Journal of Operational Research, 2014. 239(1): p. 70-79.
[25] Zhang, S., J.W. Ohlmann, and B.W. Thomas, Dynamic orienteering on a network of queues. Transportation Science, 2018.
[26] Papapanagiotou, V., R. Montemanni, and L.M. Gambardella, Objective function evaluation methods for the orienteering problem with stochastic travel and service times. Journal of applied Operational research, 2014. 6(1): p. 16-29.
[27] Miller, C.E., A.W. Tucker, and R.A. Zemlin, Integer programming formulation of traveling salesman problems. Journal of the ACM (JACM), 1960. 7(4): p. 326-329.