بررسی کارایی فرآیند پیشرفته زیستی هوازی به روش بیوراکتور بستر متحرک(MBBR) در تصفیه فاضلاب صنایع توليد مواد شوینده
الموضوعات :سعید پورکریم 1 , فریبا استوار 2 , کامران تقوی 3
1 - 1- کارشناس مسئول سامانههای گندزدایی و سنجش لحظهای، شرکت آب و فاضلاب استان گیلان
2 - عضو هیات علمی پژوهشکده محیط زیست جهاددانشگاهی، گیلان، ایران
3 - 3- استادیار، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی گیلان
الکلمات المفتاحية: دترجنت, لاینر الکیل بنزن سولفونات, اکسیداسیون شبه فنتون, MBBR, فاضلاب شوینده,
ملخص المقالة :
در این مطالعه، فرآیند بیولوژیکی هوازی به روش بیوراکتور بستر محترک (MBBR) جهت تصفیه فاضلاب صنایع شوینده مورد بررسی قرار گرفت. میانگین COD و LAS در فاضلاب خام به ترتیب mg/L 10231 و mg/L 210 بود. در این مطالعه، سه غلظت مختلف LAS ( mg/L 210، 500 و 1000 ) به منظور تعیین کارایی کل سیستم در حذف COD و LAS استفاده شد. نسبت BOD5/COD پس از پیش تصفیه از 2/0 در فاضلاب خام به 45/0 افزایش یافت. در سیستم MBBR در راکتور 1 با 36 ساعت زمان ماند هیدرولیکی (HRT) بالاترین راندمان حذف به ترتیب برابر 41/93 % و 95 % برای COD و LAS بدست آمد. در راکتور 2 نیز با شرایط مشابه با HRT برابر 36 ساعت، بالاترین راندمان حذف برای COD و LAS به ترتیب برابر 20/94 % و 99/99 % حاصل شد. با تغییرات مقدار هوای تزریقی از L/min 30 به L/min 50 و سپس L/min 70، راندمان حذف در مقدار تزریق هوا به L/min 50 افزایش یافت. بررسیهای سرعت بارگذاری بار آلی (OUR) نیز کاهش مقدار ویژه مصرف اکسیژن از حدود mg O2/gr MLSS .hr 11 در ابتدای دوره بهره برداری به حدود mg O2/gr MLSS .hr2 در انتهای دوره را نشان داد. این مطالعه نشان داد که با فرآیند MBBR می تواند استانداردهای خروجی محیط زیست برای صنایع شوینده را تامین کرده و به عنوان روشی کارآمد در تصفیه پساب صنایع شوینده بکار رود.
Aboulhassan, M., Souabi, S., Yaacoubi, A., & Baudu, M. (2006). Removal of surfactant from industrial wastewaters by coagulation flocculation process. International Journal of Environmental Science & Technology, 3(4), 327-332.
Ali Baradar Khoshfetrat, Hossein Nikakhtari, Mohammad Sadeghifar, & Mohammad Shaker Khatibi. (2011). Influence of organic loading and aeration rates on performance of a lab-scale upflow aerated submerged fixed-film bioreactor. Process Safety and Environmental Protection, 89, 193–197.
Aloui, F., Kchaou, S., & Sayadi, S. (2009). Physicochemical treatments of anionic surfactants wastewater: effect on aerobic biodegradability. Journal of Hazardous Materials, 164(1), 353-359.
Antonio Albuquerque, Jacek Makiniab, & Krishna Pagilla. (2012). Impact of aeration conditions on the removal of low concentrations of nitrogen in a tertiary partially aerated biological filter. Ecological Engineering, 44 44– 52.
Aygun, A., Nas, B., & Berktay, A. (2008). Influence of high organic loading rates on COD removal and sludge production in moving bed biofilm reactor. Environmental Engineering Science, 25(9), 1311-1316.
Ayguna, A., & Yilmazb, T. (2010). Improvement of coagulation-flocculation process for treatment of detergent wastewaters using coagulant aids. International Journal, 1(2), 97-101.
Ayguna, A., & Yilmazb, T. (2010). Improvement of Coagulation-Flocculation Process for Treatment of Detergent Wastewaters Using Coagulant Aids. International Journal of Chemical and Environmental Engineering, 1(2), 97-101.
Bandala, E. R., Pelaez, M. A., Salgado, M. J., & Torres, L. (2008). Degradation of sodium dodecyl sulphate in water using solar driven Fenton-like advanced oxidation processes. Journal of hazardous materials, 151(2), 578-584.
Barwal, A., & Chaudhary, R. (2014). To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: a review. Reviews in Environmental Science and Bio/Technology, 13(3), 285-299.
Carosia, M. F., Okada, D. Y., Sakamoto, I. K., Silva, E. L., & Varesche, M. B. A. (2014). Microbial characterization and degradation of linear alkylbenzene sulfonate in an anaerobic reactor treating wastewater containing soap powder. Bioresource technology, 167, 316-323.
Chowdhury, N., Nakhla, G., Zhu, J., & Islam, M. (2010). Pilot-scale experience with biological nutrient removal and biomass yield reduction in a liquid-solid circulating fluidized bed bioreactor. Water Environment Research, 82(9), 772-781.
de Oliveira, L. L., Costa, R. B., Okada, D. Y., Vich, D. V., Duarte, I. C. S., Silva, E. L., & Varesche, M. B. A. (2010). Anaerobic degradation of linear alkylbenzene sulfonate (LAS) in fluidized bed reactor by microbial consortia in different support materials. Bioresource technology, 101(14), 5112-5122.
Delforno, T., Moura, A., Okada, D., & Varesche, M. (2014). Effect of biomass adaptation to the degradation of anionic surfactants in laundry wastewater using EGSB reactors. Bioresource technology, 154, 114-121.
Dhouib, A., Hdiji, N., Hassaïri, I., & Sayadi, S. (2005). Large scale application of membrane bioreactor technology for the treatment and reuse of an anionic surfactant wastewater. Process Biochemistry, 40(8), 2715-2720.
Dong, Z., Lub, M., Huangc, W., & Xud, X. (2011). Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier. Journal of Hazardous Materials, 196, 123– 130.
Duarte, I., Oliveira, L., Saavedra, N., Fantinatti-Garboggini, F., Menezes, C., Oliveira, V., & Varesche, M. (2010). Treatment of linear alkylbenzene sulfonate in a horizontal anaerobic immobilized biomass reactor. Bioresource technology, 101(2), 606-612.
Federation, W. E., & Association, A. P. H. (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA.
Gaca, J., Kowalska, M., & Mróz, M. (2005). The effect of chloride ions on alkylbenzenesulfonate degradation in the Fenton reagent. Polish Journal of Environmental Studies, 14(1), 23-27.
George Tchobanoglous, Franklin L. Burton, & H. David Stensel. (2004). Wastewater Engineering: Treatment and Reuse McGraw-Hill Science/Engineering/Math, 4th Edition.
Ginestet, P., & Camacho, P. (2007). Technical evaluation of sludge production and reduction. Comparative evaluation of sludge reduction routes, 1-15.
Goode C. (2010). Understanding biosolids dynamics in a moving bed biofilm reactor. University of Toronto, Canada, Ph.D. Thesis.
H Nikakhtari, & G.A Hill. (2005). Modelling oxygen transfer and aerobic growth in shake flasks and well-mixed bioreactors. Canadian Journal of Chemical Engineering, 83, 493–499.
H. Izanloo, A. Mesdaghinia, R. Nabizadeh, S. Nasseri, K. Naddafi, A.H. Mahvi, & S.H. Nazmara. (2006). Effect of organic loading on the performance of aerated submerged fixed-film reactor (ASFFR) for crude-oil containing wastewater treatment. Iranian Journal of Environmental Health Science Engineering, 3, 85–90.
H. Nikakhtari, & G.A. Hill. (2006). Closure effects on oxygen transfer and aerobic growth in shake flasks. Biotechnology and Bioengineering, 95, 15–21.
Hye Ok Park, Sanghwa Oh, Rabindra Bade, & Shin, W. S. (2010). Application of A2O moving-bed biofilm reactors for textile dyeing wastewater treatment. Korean Journal of Chemical Engineering, 27(3), 893-899.
Jadwiga Kaleta, & Elektorowicz., M. (2013). The removal of anionic surfactants from water in coagulation process. Environmental Technology, 34(8), 999–1005.
Jangkorn, S., Kuhakaew, S., Theantanoo, S., Klinla-Or, H., & Sriwiriyarat, T. (2011a). Evaluation of reusing alum sludge for the coagulation of industrial wastewater containing mixed anionic surfactants. Journal of Environmental Sciences, 23(4), 587-594.
Jangkorn, S., Kuhakaew, S., Theantanoo, S., Klinla-or, H., & Sriwiriyarat, T. (2011b). Evaluation of reusing alum sludge for the coagulation of industrial wastewater containing mixed anionic surfactants. Journal of Environmental Sciences, 23(4), 587–594.
KARCI, A., ALATON, İ. A., & BEKBÖLET, M. (2013). ADVANCED OXIDATION OF A NONIONIC SURFACTANT: EXAMINATION OF THE DEGRADATION PRODUCTS–ACUTE TOXICITY RELATIONSHIP. Sigma, 31, 508-516.
Kim Y.M, Park D, Lee D.S, & Park J.M. (2008). Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment. Journal of Hazardous Materials, 152, 915–921.
Koupaie, E. H., Moghaddam, M. A., & Hashemi, S. (2011). Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines. Journal of hazardous materials, 195, 147-154.
Lauchnor E.G, Radniecki T.S, & Semprini L. (2011). Inhibition and gene expression of Nitrosomona europaeabiofilms exposed to phenol and toluene Biotechnology and Bioengineering, 108, 750–757.
Lazarova V, & Manem J. (1995). Biofilm characterization and activity analysis in water and wastewater treatment. Water Research, 29 2227–2245.
Mahvi A.H, Maleki A, & Roshani B. (2004). Removal of Anionic Surfactants in Detergent Wastewater by Chemical Coagualation. Pakistan Journal of Biological Sciences, 7(12), 2222-2226.
Mahvi, A. H., Maleki, A., & Roshani, B. (2004). Removal of Anionic Surfactants in Detergent Wastewater by Chemical Coagulation. Pakistan Journal of Biological Sciences, 7(12), 2222-2226.
Merrettig-Bruns, U., & Jelen, E. (2009). Anaerobic biodegradation of detergent surfactants. Materials, 2(1), 181-206.
Mollaei, J., Mortazavi, S. B., & Jafari, A. J. (2015). Applying moving bed biofilm reactor for removing linear alkylbenzene sulfonate using synthetic media. Iranian Journal of Health, Safety and Environment, 2(1), 204-210.
Ødegaard, H. (1999). The moving bed biofilm reactor. Water Environmental Engineering and Reuse of Water, 250-305.
Okada, D. Y., Delforno, T. P., Etchebehere, C., & Varesche, M. B. (2014). Evaluation of the microbial community of upflow anaerobic sludge blanket reactors used for the removal and degradation of linear alkylbenzene sulfonate by pyrosequencing. International Biodeterioration & Biodegradation, 96, 63-70.
Panizza, M., Barbucci, A., Delucchi, M., Carpanese, M., Giuliano, A., Cataldo-Hernández, M., & Cerisola, G. (2013). Electro-Fenton degradation of anionic surfactants. Separation and Purification Technology, 118, 394-398.
Papadopoulos A, Savvides C, Loizidis M, Haralambous K.J, & Loizidou M. (1997). An assessment ofthe quality and treatment of detergent wastewater. Water Science and Technology, 36(2-3), 377-381.
Qiyuan Gu, Tichang Sun, Gen Wu, Mingyue Li, & Wei Qiu. (2014). Influence of carrier filling ratio on the performance of moving bed biofilm reactor in treating coking wastewater. Bioresource Technology, 166 72–78.
S.J. Khan, & C. Visvanathan. (2008). Influence of mechanical mixing intensity on a biofilm structure and permeability in a membrane bioreactor. Desalination, 231 253–267
Wang, X.-J., Song, Y., & Mai, J.-S. (2008). Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate. Journal of hazardous materials, 160(2), 344-348.
Weiss, J. S., Alvarez, M., Tang, C.-C., Horvath, R. W., & Stahl, J. F. (2005). Evaluation of moving bed biofilm reactor technology for enhancing nitrogen removal in a stabilization pond treatment plant. Proceedings of the Water Environment Federation, 2005(14), 2085-2102.
Yousef Rahimi, Ali Torabian, Naser Mehrdadi, Mehran Habibi-Rezaie, Hamid Pezeshkc, & Gholam-Reza Nabi-Bidhendi. (2011). Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor. Journal of Hazardous Materials, 186, 1097–1102.
Zhang, S., Wang, Y., He, W., Wu, M., Xing, M., Yang, J., . . . Yin, D. (2013). Responses of biofilm characteristics to variations in temperature and NH 4+-N loading in a moving-bed biofilm reactor treating micro-polluted raw water. Bioresource technology, 131, 365-373.