Optimized kernel Nonparametric Weighted Feature Extraction for Hyperspectral Image Classification
الموضوعات :
1 - Department of Electrical Engineering,University of Jiroft
الکلمات المفتاحية: Feature Extraction, Image Classification, Optimized KNWFE, Hyperspectral, kernel,
ملخص المقالة :
Hyperspectral image (HSI) classification is an essential means of the analysis of remotely sensed images. Remote sensing of natural resources, astronomy, medicine, agriculture, food health, and many other applications are examples of possible applications of this technique. Since hyperspectral images contain redundant measurements, it is crucial to identify a subset of efficient features for modeling the classes. Kernel-based methods are widely used in this field. In this paper, we introduce a new kernel-based method that defines Hyperplane more optimally than previous methods. The presence of noise data in many kernel-based HSI classification methods causes changes in boundary samples and, as a result, incorrect class hyperplane training. We propose the optimized kernel non-parametric weighted feature extraction for hyperspectral image classification. KNWFE is a kernel-based feature extraction method, which has promising results in classifying remotely-sensed image data. However, it does not take the closeness or distance of the data to the target classes. Solving the problem, we propose optimized KNWFE, which results in better classification performance. Our extensive experiments show that the proposed method improves the accuracy of HSI classification and is superior to the state-of-the-art HIS classifiers.
[1] H. Li, H. Zhou, L. Pan, and Q. Du, “Gabor feature-based composite kernel method for hyperspectral image classification,” vol. 54, no. 10, 2018, doi: 10.1049/el.2018.0272.
[2] D. Hong, X. Wu, P. Ghamisi, J. Chanussot, N. Yokoya, and X. X. Zhu, “Invariant Attribute Profiles: A Spatial-Frequency Joint Feature Extractor for Hyperspectral Image Classification,” IEEE Trans. Geosci. Remote Sens., pp. 1–18, 2020, doi: 10.1109/TGRS.2019.2957251.
[3] S. Suresh and S. Lal, “A Metaheuristic Framework based Automated Spatial-Spectral Graph for Land Cover Classification from Multispectral and Hyperspectral Satellite Images,” Infrared Phys. Technol., vol. 105, no. January, p. 103172, 2020, doi: 10.1016/j.infrared.2019.103172.
[4] P. Xiang et al., “Hyperspectral anomaly detection by local joint subspace process and support vector machine,” Int. J. Remote Sens., vol. 41, no. 10, pp. 3798–3819, 2020.
[5] P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. J. Plaza, “Advanced spectral classifiers for hyperspectral images: A review,” IEEE Geosci. Remote Sens. Mag., vol. 5, no. 1, pp. 8–32, 2017.
[6] L. Fang, Z. Liu, and W. Song, “Deep Hashing Neural Networks for Hyperspectral,” IEEE Geosci. Remote Sens. Lett., vol. PP, pp. 1–5, 2019, doi: 10.1109/LGRS.2019.2899823.
[7] E. M. Paoletti, M. J. Haut, J. Plaza, and A. Plaza, “Deep&Dense Convolutional Neural Network for Hyperspectral Image Classification,” Remote Sens., vol. 10, no. 9, pp. 1–21, 2018, doi: 10.3390/rs10091454.
[8] H. Lee, M. Kim, D. Jeong, S. Delwiche, K. Chao, and B.-K. Cho, “Detection of cracks on tomatoes using a hyperspectral near-infrared reflectance imaging system,” Sensors, vol. 14, no. 10, pp. 18837–18850, 2014.
[9] B.-C. Kuo and D. A. Landgrebe, “Nonparametric weighted feature extraction for classification,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 5, pp. 1096–1105, 2004.
[10] M. R. Almeida, L. P. L. Logrado, J. J. Zacca, D. N. Correa, and R. J. Poppi, “Raman hyperspectral imaging in conjunction with independent component analysis as a forensic tool for explosive analysis: The case of an ATM explosion,” Talanta, vol. 174, pp. 628–632, 2017.
[11] Z. Chen, J. Jiang, X. Jiang, X. Fang, and Z. Cai, “Spectral-spatial feature extraction of hyperspectral images based on propagation filter,” Sensors (Switzerland), vol. 18, no. 6, pp. 1–16, 2018, doi: 10.3390/s18061978.
[12] J. Jiang, J. Ma, C. Chen, Z. Wang, Z. Cai, and L. Wang, “SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 8, pp. 4581–4593, Aug. 2018, doi: 10.1109/TGRS.2018.2828029.
[13] H. Su, S. Member, B. Zhao, Q. Du, P. Du, and S. Member, “With Local Correlation Features for Hyperspectral Image Classification,” IEEE Trans. Geosci. Remote Sens., vol. PP, pp. 1–12, 2018, doi: 10.1109/TGRS.2018.2866190.
[14] G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351–1362, Jun. 2005, doi: 10.1109/TGRS.2005.846154.
[15] M. Khodadadzadeh, P. Ghamisi, C. Contreras, and R. Gloaguen, “Subspace Multinomial Logistic Regression Ensemble for Classification of Hyperspectral Images,” in IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Jul. 2018, pp. 5740–5743, doi: 10.1109/IGARSS.2018.8519404.
[16] S. Song, H. Zhou, J. Zhou, K. Qian, K. Cheng, and Z. Zhang, “Hyperspectral anomaly detection based on anomalous component extraction framework,” Infrared Phys. Technol., vol. 96, pp. 340–350, 2019, doi: 10.1016/j.infrared.2018.12.008.
[17] E. Blanzieri and F. Melgani, “Nearest Neighbor Classification of Remote Sensing Images With the Maximal Margin Principle,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1804–1811, Jun. 2008, doi: 10.1109/TGRS.2008.916090.
[18] D. Tuia and G. Camps-Valls, “Semisupervised Remote Sensing Image Classification With Cluster Kernels,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 224–228, Apr. 2009, doi: 10.1109/LGRS.2008.2010275.
[19] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral Image Classification via.pdf,” vol. 51, no. 1, pp. 217–231, 2013.
[20] X. Weng, W. Lei, and X. Ren, “Kernel sparse representation for hyperspectral unmixing based on high mutual coherence spectral library,” Int. J. Remote Sens., vol. 41, no. 4, pp. 1286–1301, 2020, doi: 10.1080/01431161.2019.1666215.
[21] Y. Xu, Z. Wu, J. Chanussot, and Z. Wei, “Nonlocal Patch Tensor Sparse Representation for Hyperspectral Image Super-Resolution,” IEEE Trans. Image Process., vol. 28, no. 6, pp. 3034–3047, 2019, doi: 10.1109/TIP.2019.2893530.
[22] G. Cheng, Z. Li, J. Han, X. Yao, and L. Guo, “Exploring Hierarchical Convolutional Features for Hyperspectral Image Classification,” IEEE Trans. Geosci. Remote Sens., vol. PP, pp. 1–11, 2018, doi: 10.1109/TGRS.2018.2841823.
[23] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “ISPRS Journal of Photogrammetry and Remote Sensing A new deep convolutional neural network for fast hyperspectral image classification,” ISPRS J. Photogramm. Remote Sens., vol. 145, pp. 120–147, 2018, doi: 10.1016/j.isprsjprs.2017.11.021.
[24] B. Pan, Z. Shi, and X. Xu, “ISPRS Journal of Photogrammetry and Remote Sensing MugNet : Deep learning for hyperspectral image classification using limited samples,” ISPRS J. Photogramm. Remote Sens., 2017, doi: 10.1016/j.isprsjprs.2017.11.003.
[25] O. Okwuashi and C. E. Ndehedehe, “Deep support vector machine for hyperspectral image classification,” Pattern Recognit., vol. 103, pp. 2–25, 2020, doi: 10.1016/j.patcog.2020.107298.
[26] B. C. Kuo, C. H. Li, and J. M. Yang, “Kernel nonparametric weighted feature extraction for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1139–1155, 2009, doi: 10.1109/TGRS.2008.2008308.
[27] L. Sun, C. Ma, Y. Chen, H. J. Shim, Z. Wu, and B. Jeon, “Adjacent superpixel-based multiscale spatial-spectral kernel for hyperspectral classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 12, no. 6, pp. 1905–1919, 2019.
[28] T. Zhan, L. Sun, Y. Xu, G. Yang, Y. Zhang, and Z. Wu, “Hyperspectral classification via superpixel kernel learning-based low rank representation,” Remote Sens., vol. 10, no. 10, p. 1639, 2018.
[29] J. Liu, Z. Wu, Z. Xiao, and J. Yang, “Region-based relaxed multiple kernel collaborative representation for hyperspectral image classification,” IEEE Access, vol. 5, pp. 20921–20933, 2017.
[30] Y. Xu, B. Du, F. Zhang, and L. Zhang, “Hyperspectral image classification via a random patches network,” ISPRS J. Photogramm. Remote Sens., vol. 142, pp. 344–357, 2018.