بررسی ریختزمینساختی پهنه انتهای گسلی اطراف قوزلو (جنوب شرقی گسل شمال تبریز)
محورهای موضوعی :علیرضا یوسفی باویل 1 , محسن مؤید 2
1 - دپارتمان ژئوتکتونیک و زمین شناسی منطقه ای، انستیتو زمین شناسی آذربایجان، باکو
2 -
کلید واژه: پروفیل حائلدار پروفیل طولی آبراهه پهنه انتهای گسلی ریختزمینساخت گسل شمال تبریز,
چکیده مقاله :
اثر سطحی گسلها در پهنه انتهای گسلی قوزلو، واقع در انتهای جنوب شرقی قطعهای از گسل شمال تبریز که به پهنه تغییر شکل بزقوش منتهی میگردد، نشان از تشکیل یک ساختار دماسبی است. هر چند که در مورد نوع این ساختار دماسبی و یا الگوی تغییر شکل آن اطلاعاتی در دست نیست. در این راستا بررسیهای مربوط به توپوگرافی (مطالعه تغییرات نسبی ارتفاع در دو مقیاس در پهنههای حائل کل پهنه تغییر شکل و پهنههای اطراف آبراهههای جاری درون پهنه)، شیب سطح، شاخص عدم تقارن و اطلاعات زمینشناسی نشان میدهد که: 1) پهنه انتهای گسلی از نوع ساختار دماسبی انقباضی است. 2) درون پهنه انتهای گسلی رژیم زمینساختی از نوع فشارشی حاکم بوده و روند حداکثر فشارش N20W-S20E است. 3) در درون پهنه انتهای گسلی در طول دو آبراهه، دو پهنه گسلی متفاوت با حداکثر و حداقل فعالیت زمینساختی شناسایی گردید. 4) در داخل پهنههای گسلی مرتبط با آبراههها مولفه شیبلغز کلی از نوع معکوس یا رانده است. این نتایج اطلاعات مهمی در باره زمینساخت پهنه انتهای گسلی قوزلو فراهم کرده و دانش ما در مورد تغییر شکل درون پهنه گسلی شمال تبریز را بهبود میبخشد. این بررسی همچنین اهمیت کاربرد پروفیلهای حائلدار طولی آبراههها جهت حصول مستقیم دادههای زمینساختی از توپوگرافی را نشان میدهد.
Fault traces within the Qozlu fault tip zone, located at the southeast end of a segment of the North Tabriz fault, which reaches to the Bozqush deformation zone, represents the formation of a horsetail structure. There is, however, no information about the type of this structure or its deformation pattern. In this regard, study of topography (analysis of the relative elevation difference at two scales—within the overall deformation zone and in buffer zones along streams flowing within the zone), surface slope, asymmetry factor, and geological information indicate that: 1) the fault tip zone is a contractional horsetail splay; 2) a compressional tectonic regime is dominant within the fault tip zone and the trend of maximum compression is N20W-S20E; 3) two different fault zones with maximum and minimum tectonic activities are recognised along two streams within the fault tip zone ; 4) the overall dip-slip component within the stream-related fault zones is reverse or thrust. These results provide significant information about tectonics of the Qozlu fault tip zone and improve our knowledge of deformation within the North Tabriz fault zone. This study, also, demonstrates the importance of using stream longitudinal swath profiles to obtain tectonic information directly from topography.
1. آقا نباتی، آ.،1385. زمینشناسی ایران. سازمان زمینشناسی و اکتشافات معدنی کشور، 586.
2. بهروزی، آ.، امینی فضل، آ.، امینی آذر، ب.، امامی، م.ح.، عزتیان، ف.، داوری، م.، هادوی، ف. و پرتو آذر، ح.، 1356. نقشه زمینشناسی 1:100000 چهارگوش بستان آباد - برگه 5365. سازمان زمینشناسی و اکتشافات معدنی کشور، تهران.
3. مرادی سیاهکلی، ع.، تاتار، م.، هاتسفلد، د. و پل، آ.، 1387. مطالعه ساختار سرعتي پوسته و سازوكار گسلش در زون گسلي امتدادلغز تبريز. علوم زمین، 70، 153–140.
4. Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geological Society of America Bulletin, 103, 8, 983–992.
5. Barrow-Huribert, S.A., 1985. Geology and neotectonics of the Upper Nevis Basin, South Island, New Zealand. MSc thesis, Oregon State University, 161.
6. Cartwright, J.A. and Mansfield, C.S., 1998. Lateral displacement variation and lateral tip geometry of normal faults in Canyonlands National Park, Utah. Journal of Structural Geology, 20, 1, 3–19.
7. Chinnery, M.A., 1966. Secondary faulting: II. Geological aspects. Canadian Journal of Earth Sciences, 3, 2, 175–190.
8. Davis, G.H. and Reynolds, S.J., 1996. Structural Geology of Rocks and Regions. 2nd edition, John Wiley and Sons, Incorporated, 776.
9. de Joussineau, G. and Atilla, A., 2009. Segmentation along strike-slip faults revisited. Pure and Applied Geophysics, 166, 1575–1594.
10. Eftekhar-Nezhad, A., 1975. Brief description of tectonic history and structural development of Azarbaidjan. Internal Report, Geological Survey of Iran, 1–8.
11. Huggett, R.J. 2007. Fundamentals of Geomorphology. 2nd edition, Routledge, London, 458.
12. Jaeger, C., 2009. Rock Mechanics and Engineering, 2nd edition, Cambridge University Press, Cambridge, 523.
13. Jaeger, J.C., Cook, N.G.W. and Zimmermann, R.W., 2007. Fundamentals of Rock Mechanics. 4th edition, Blackwell Publishing, Oxford, UK, 475.
14. Karakhaniana, A.S., Trifonovb, V.G., Philip, H., Avagyana, A., Hessamid, K., Jamalie, F., Bayraktutan, M.S., Bagdassariana, H., Arakeliana, S., Davtian, V. and Adilkhanyan, A., 2004. Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran. Tectonophysics, 380, 189–219.
15. Katz, O., Reches, Z., and Baer, G., 2003. Faults and their associated host rock deformation: Part I. Structure of small faults in a quartz–syenite body, southern Israel. Journal of Structural Geology, 25, 1675–1689.
16. Keller, E.A. and Pinter, N., 1996. Active Tectonics: Earthquakes, Uplift, and Landscape. Prentice Hall, New Jersey, USA, 338.
17. McLeish, A., 1992. Geological Science. Nelson Thornes, UK, 308.
18. Moores, E.M. and Twiss, R.J., 1995. Tectonics. Freeman and Company, New York, 415.
19. Shipton, Z. and Cowie, P., 2001. Damage zone and slip-surface evolution over μm to km scales in high-porosity Navajo sandstone, Utah. Journal of Structural Geology, 23, 1825–1844.
20. Talebian, M. and Jackson, J.A., 2002. Offset on the Main Recent Fault of the NW Iran and implications for the late Cenozoic tectonics of the Arabia-Eurasia collision zone. Geophysical Journal International, 150, 422–439.
21. Vernant, P., Nilforushan, F., Hatzfeld, D., Abbasi, M.R., Vigny, C., Masson, F., Nankali, H., Martinold, J., Ashtiani, A., Tavakoli, F. and Chery, J., 2004. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157, 38–398.
22. Wibberley, C.A.J., Kurz, W., Imber, J., Holdsworth, R.E. and Collettini, C., 2008. The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties. Geological Society, London, Special Publications, 367.
23. Kim, Y.S., Andrews J.R. and Sanderson, D.J., 2001. Reactivated strike–slip faults: examples from north Cornwall, UK. Tectonophysics, 340, 173–194.
24. Yousefi-Bavil, A., 2012. Longitudinal profiles of bedrock rivers around North Tabriz and North Misho faults: implications for geomorphic fault segmentation (Eastern Azerbaijan province, Iran). Academy of Sciences Malaysia’s Science Journal 6, 2, 107–121.
25. Yousefi-Bavil, A., 2013. Kinematical and superficial-geometrical study of North Tabriz-North Misho faults (segmentation). Unpublished PhD thesis, Geology Institute of Azerbaijan, 233.